1
|
Rolli E, Ghitti E, Mapelli F, Borin S. Polychlorinated biphenyls modify Arabidopsis root exudation pattern to accommodate degrading bacteria, showing strain and functional trait specificity. FRONTIERS IN PLANT SCIENCE 2024; 15:1429096. [PMID: 39036359 PMCID: PMC11258928 DOI: 10.3389/fpls.2024.1429096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Introduction The importance of plant rhizodeposition to sustain microbial growth and induce xenobiotic degradation in polluted environments is increasingly recognized. Methods Here the "cry-for-help" hypothesis, consisting in root chemistry remodeling upon stress, was investigated in the presence of polychlorinated biphenyls (PCBs), highly recalcitrant and phytotoxic compounds, highlighting its role in reshaping the nutritional and signaling features of the root niche to accommodate PCB-degrading microorganisms. Results Arabidopsis exposure to 70 µM PCB-18 triggered plant-detrimental effects, stress-related traits, and PCB-responsive gene expression, reproducing PCB phytotoxicity. The root exudates of plantlets exposed for 2 days to the pollutant were collected and characterized through untargeted metabolomics analysis by liquid chromatography-mass spectrometry. Principal component analysis disclosed a different root exudation fingerprint in PCB-18-exposed plants, potentially contributing to the "cry-for-help" event. To investigate this aspect, the five compounds identified in the exudate metabolomic analysis (i.e., scopoletin, N-hydroxyethyl-β-alanine, hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine) were assayed for their influence on the physiology and functionality of the PCB-degrading strains Pseudomonas alcaliphila JAB1, Paraburkholderia xenovorans LB400, and Acinetobacter calcoaceticus P320. Scopoletin, whose relative abundance decreased in PCB-18-stressed plant exudates, hampered the growth and proliferation of strains JAB1 and P320, presumably due to its antimicrobial activity, and reduced the beneficial effect of Acinetobacter P320, which showed a higher degree of growth promotion in the scopoletin-depleted mutant f6'h1 compared to Arabidopsis WT plants exposed to PCB. Nevertheless, scopoletin induced the expression of the bph catabolic operon in strains JAB1 and LB400. The primary metabolites hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine, which increased in relative abundance upon PCB-18 stress, were preferentially used as nutrients and growth-stimulating factors by the three degrading strains and showed a variable ability to affect rhizocompetence traits like motility and biofilm formation. Discussion These findings expand the knowledge on PCB-triggered "cry-for-help" and its role in steering the PCB-degrading microbiome to boost the holobiont fitness in polluted environments.
Collapse
Affiliation(s)
| | | | | | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
2
|
Suman J, Sredlova K, Fraraccio S, Jerabkova M, Strejcek M, Kabickova H, Cajthaml T, Uhlik O. Transformation of hydroxylated polychlorinated biphenyls by bacterial 2-hydroxybiphenyl 3-monooxygenase. CHEMOSPHERE 2024; 349:140909. [PMID: 38070605 DOI: 10.1016/j.chemosphere.2023.140909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Monohydroxylated PCBs (OH-PCBs) are an (eco)toxicologically significant group of compounds, as they arise from the oxidation of polychlorinated biphenyls (PCBs) and, at the same time, may exert even more severe toxic effects than their parent PCB molecules. Despite having been widely detected in environmental samples, plants, and animals, information on the fate of OH-PCBs in the environment is scarce, including on the enzymatic machinery behind their degradation. To date, only a few bacterial taxa capable of OH-PCB transformation have been reported. In this study, we aimed to obtain a deeper insight into the transformation of OH-PCBs in soil bacteria and isolated a Pseudomonas sp. strain P1B16 based on its ability to use o-phenylphenol (2-PP) which, when exposed to the Delor 103-derived OH-PCB mixture, depleted a wide spectrum of mono-, di, and trichlorinated OH-PCBs. In the P1B16 genome, a region designated as hbp was identified, which bears a set of putative genes involved in the transformation of OH-PCBs, namely hbpA encoding for a putative flavin-dependent 2-hydroxybiphenyl monooxygenase, hbpC (2,3-dihydroxybiphenyl-1,2-dioxygenase), hbpD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase), and the transcriptional activator-encoding gene hbpR. The hbpA coding sequence was heterologously expressed, purified, and its substrate specificity was investigated towards the Delor 103-derived OH-PCB mixture, individual OH-PCBs, and multiple (chlorinated) phenolics. Apart from 2-PP and 2-chlorophenol, HbpA was also demonstrated to transform a range of OH-PCBs, including a 3-hydroxy-2,2',4',5,5'-pentachlorobiphenyl. Importantly, this is the first direct evidence of HbpA homologs being involved in the degradation of OH-PCBs. Moreover, using a P1B16-based biosensor strain, the specific induction of hbp genes by 2-PP, 3-phenylphenol, 4-phenylphenol, and the OH-PCB mixture was demonstrated. This study provides direct evidence on the specific enzymatic machinery responsible for the transformation of OH-PCBs in bacteria, with many implications in ecotoxicology, environmental restoration, and microbial ecology in habitats burdened with PCB contamination.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic.
| | - Kamila Sredlova
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic
| | - Martina Jerabkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic
| | - Hana Kabickova
- Military Health Institute, Ministry of Defence of the Czech Republic, U Vojenske Nemocnice 1200, 169 02, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic.
| |
Collapse
|
3
|
Wang S, Zhao X, Li J, Dai Y, Cheng X, Jiang L, Luo C, Zhang G. A novel mechanism of enhanced PCBs degradation associated with nitrogen in the rhizosphere of the wetland plant Myriophyllum aquaticum. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132466. [PMID: 37716270 DOI: 10.1016/j.jhazmat.2023.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Co-contamination of polychlorinated biphenyls (PCBs) and nitrogen (N) is widespread. Here, N removal and PCBs degradation were investigated in constructed wetlands populated with Myriophyllum aquaticum, and the role of N in PCBs degradation was explored as well. Nearly 97% of N was removed in the planted system, whereas less than 40% was removed in the plant-free system. Compared to the treatment with plants and no N amendment, N addition enhanced plant growth by 31.9% and PCBs removal by 9.90%. PCBs attenuation was mainly attributed to microbial degradation rather than plant uptake. Using DNA stable-isotope probing, 26 operational taxonomic units were identified across all treatments, of which 25 were linked to PCBs degradation for the first time. Some PCB-degraders were associated with nitrification/denitrification and were significantly enriched in the treatment that included both plants and N application, indicating that PCBs degradation was promoted by recruiting ammonia-oxidising and denitrifying microbes with PCBs metabolic ability. This was confirmed by the higher A13/A12 ratios for the bphC, amoA, and nirK genes and their significant positive correlations. Overall, the findings clarify the novel mechanism by which N promotes PCBs degradation in constructed wetlands and offers a theoretical basis for efficiently removing inorganic elements and persistent organic pollutants.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China; School of Materials and Environmental Engineering, Chengdu Technology University, Chengdu 610000, China
| | - Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|