1
|
Gobbo A, Fraiture MA, Van Poelvoorde L, De Keersmaecker SCJ, Garcia-Graells C, Van Hoorde K, Verhaegen B, Huwaert A, Maloux H, Hutse V, Ceyssens PJ, Roosens N. Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11145. [PMID: 39467614 DOI: 10.1002/wer.11145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
According to World Health Organization (WHO), antimicrobial resistance (AMR) is currently one of the world's top 10 health threats, causing infections to become difficult or impossible to treat, increasing the risk of disease spread, severe illness, disability, and death. Accurate surveillance is a key component in the fight against AMR. Wastewater is progressively becoming a new player in AMR surveillance, with the promise of a cost-effective real-time tracking of global AMR profiles in specific regions. One of the most useful analytical methods for wastewater surveillance is currently based on real-time PCR (qPCR) and digital droplet PCR (ddPCR) technologies. As stated in the EU Wastewater Treatment Directive proposal, methodological standardization, including a workflow for method development and validation, will play a crucial role in global monitoring of AMR in wastewater. However, according to our knowledge, there are currently no qPCR and ddPCR methods for AMR surveillance available that have been validated according to international standard performance criteria. Therefore, this study proposes a workflow for the development and validation of PCR-based methods for a harmonized and global AMR surveillance, including the construction of specific sequence databases and microbial collections for an efficient method development and method specificity evaluation. Following this strategy, we have developed and validated four duplex ddPCR methods responding to international standard performance criteria, focusing on seven AMR genes (ARG's), including extended spectrum beta-lactam (blaCTX-M), carbapenem (blaKPC-2/3), tetracycline (tet(M)), erythromycin (erm(B)), vancomycin (vanA), sulfonamide (sul2), and aminoglycoside (aac(3)-IV), as well as one indicator of antibiotic (multi-) resistance and horizontal gene transfer, named the class I integron (intl1). The performance of these ddPCR methods was successfully assessed for their specificity, as no false-positive and false-negative results were observed. These ddPCR methods were also considered to be highly sensitive as showing a limit of detection below 25 copies of the targets. In addition, their applicability was confirmed using 14 wastewater samples collected from two Belgian water resource recovery facilities. The proposed study represents therefore a step forward to reinforce method harmonization in the context of the global AMR surveillance in wastewater. PRACTITIONER POINTS: In the context of wastewater surveillance, no PCR-based methods for global AMR monitoring are currently validated according to international standards. Consequently, we propose a workflow to develop and validate PCR-based methods for a harmonized and global AMR surveillance. This workflow resulted here in four duplex ddPCR methods targeting seven ARGs and one general indicator for mobilizable resistance genes. The applicability of these validated ddPCR methods was confirmed on 14 wastewater samples from two Belgian water resource recovery facilities.
Collapse
Affiliation(s)
- Andrea Gobbo
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | | | | | | | - Hadrien Maloux
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | - Veronik Hutse
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | | | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
2
|
Gehlot P, P H. Unveiling the ecological landscape of bacterial β-lactam resistance in Delhi-national capital region, India: An emerging health concern. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121288. [PMID: 38850900 DOI: 10.1016/j.jenvman.2024.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Inappropriate antibiotic use not only amplifies the threat of antimicrobial resistance (AMR), moreover exacerbates the spread of resistant bacterial strains and genes in the environment, underscoring the critical need for effective research and interventions. Our aim is to assess the prevalence and resistance characteristics of β-lactam resistant bacteria (BLRB) and β-lactamase resistant bacterial genes (BLRBGs) under various environmental conditions within Delhi NCR, India. Using a culture-dependent method, we isolated 130 BLRB from 75 different environmental samples, including lakes, ponds, the Yamuna River, agricultural soil, aquatic weeds, drains, dumping yards, STPs, and gaushalas. Tests for antibiotic susceptibility were conducted in addition to phenotypic and genotypic identification of BLs and integron genes. The water and sediment samples recorded an average bacterial abundance of 3.6 × 106 CFU/mL and an average ampicillin-resistant bacterial count of 2.2 × 106 CFU/mL, which can be considered a potent reservoir of BLRB and BLRBGs. The majority of the BLRB discovered are opportunistic pathogens from the Bacillus, Aeromonas, Pseudomonas, Enterobacter, Escherichia, and Klebsiella genera, with Multiple Antibiotic Resistance (MAR) index ≥0.2 against a wide variety of β-lactams and β-lactamase (BLs) inhibitor combinations. The antibiotic resistance pattern was similar in the case of bacteria isolated from STPs. Meanwhile, bacteria isolated from other sources were diverse in their antibiotic resistance profile. Interestingly, we discovered that 10 isolates of various origins produce both Extended Spectrum BLs and Metallo BLs, as well as found harboring blaTEM, blaCTX, blaOXA, blaSHV, int-1, and int-3 genes. Enterobacter cloacae (S50/A), a common nosocomial pathogen isolated from Yamuna River sediment samples at Nizamuddin point, possesses three BLRBGs (blaTEM, blaCTX, and blaOXA) and a MAR index of 1.0, which is a major cause for concern. Therefore, identifying the source, origin and dissemination of BLRB and BLRGs in the environment is of the utmost importance for designing effective mitigation approaches to reduce a load of antimicrobial resistance factors in the environmental settings.
Collapse
Affiliation(s)
- Priyanka Gehlot
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Hariprasad P
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Singh R, Ryu J, Park SS, Kim S, Kim K. Monitoring viruses and beta-lactam resistance genes through wastewater surveillance during a COVID-19 surge in Suwon, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171223. [PMID: 38417514 DOI: 10.1016/j.scitotenv.2024.171223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The present study reports data on a long-term campaign for monitoring SARS-CoV-2, norovirus, hepatitis A virus, and beta-lactam resistance genes in wastewater samples from a wastewater treatment plant during COVID-19 surge in Suwon, South Korea. Real-time digital PCR (RT-dPCR) assays indicated 100 % occurrence of all but hepatitis A virus and blaNDM gene in influent wastewater samples. CDC-N1 assay detected SARS-CoV-2 in all influent samples with an average log-transformed concentration of 5.1 ± 0.39 and the highest level at 6.02 gene copies/L. All samples were also positive for norovirus throughout the study with a mean concentration 5.67 ± 0.65 log10 gene copies/L. On the contrary, all treated wastewater (effluent) tested negative for both viruses' genetic materials. Furthermore, plasmid-mediated AmpC β-lactamases (PABLs) genes blaDHA, blaACC, and blaFOX, extended-spectrum β-lactamases (ESBLs) genes blaTEM and blaCTX, and Klebsiella pneumoniae carbapenemase (blaKPC) gene were measured at average concentrations of 7.05 ± 0.26, 5.60 ± 0.35, 7.82 ± 0.43, 8.38 ± 0.20, 7.64 ± 0.29, and 7.62 ± 0.41 log10 gene copies/L wastewater, respectively. Beta-lactam resistance genes showed strong correlations (r), the highest being 0.86 for blaKPC - blaFOX, followed by 0.82 for blaTEM - blaCTX and 0.79 for blaTEM - blaDHA. SARS-CoV-2 RNA occurrence in the wastewater was strongly associated (r = 0.796) with COVID-19 cases in the catchment during the initial study period of six months. A positive association of the SARS-CoV-2 RNA with the prevalence of COVID-19 cases showed a promising role of community-scale monitoring of pathogens to provide considerable early signals of infection dynamics. High concentrations of beta-lactam resistance genes in wastewater indicated a high concern for one of the biggest global health threats in South Korea and the need to find control measures. Moreover, antibiotic-resistance genes in treated wastewater flowing through water bodies and agricultural environments indicate further dissemination of antibiotic resistance traits and increasing microbial antibiotic resistance.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sung Soo Park
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sungpyo Kim
- Department of Environmental Systems Engineering, Korea University, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea.
| |
Collapse
|
4
|
Mansoor MH, Lu X, Woksepp H, Sattar A, Humak F, Ali J, Li R, Bonnedahl J, Mohsin M. Detection and genomic characterization of Klebsiella pneumoniae and Escherichia coli harboring tet(X4) in black kites (Milvus migrans) in Pakistan. Sci Rep 2024; 14:9054. [PMID: 38643223 PMCID: PMC11032342 DOI: 10.1038/s41598-024-59201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.
Collapse
Affiliation(s)
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, 391 85, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Amna Sattar
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Farwa Humak
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Jabir Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
- Department of Infectious Diseases, Region Kalmar County, 391 85, Kalmar, Sweden.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Wang D, Zou H, Zhao L, Li Q, Meng M, Li X, Berglund B. High prevalence of Escherichia coli co-harboring conjugative plasmids with colistin- and carbapenem resistance genes in a wastewater treatment plant in China. Int J Hyg Environ Health 2023; 250:114159. [PMID: 36989999 DOI: 10.1016/j.ijheh.2023.114159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Emergence and dissemination of resistance to last-resort antibiotics such as carbapenem and colistin is a growing, global health concern. Wastewater treatment plants (WWTPs) link human activities and the environment, can act as reservoirs and sources for emerging antibiotic resistance, and likely play a large role in antibiotic resistance transmission. The aim of this study was to investigate occurrence and characteristics of colistin- and carbapenem-resistant Escherichia coli (CCREC) in wastewater and sludge samples collected over a one-year period from different functional areas of an urban WWTP in Jinan city, Shandong, China. A total of 8 CCREC were isolated from 168 samples with selective agar and PCR, corresponding to high prevalence of 4.8%, co-harboring carbapenem resistance genes (blaNDM) and colistin resistance gene (mcr-1) and subsequently whole-genome sequenced. Additionally, all isolates were multidrug-resistant by antimicrobial susceptibility testing and carried a variety of antibiotic resistance genes. Two isolates carrying virulence genes associated with avian pathogenic E. coli were identified, one belonging to the high-risk clone O101:H9-ST167. Southern blotting was used to characterize CCREC isolates and plasmids carrying blaNDM-genes or mcr-1 could be transferred to a recipient strain E. coli J53 by in vitro conjugation assays. Resistance to other antibiotic classes were sporadically co-transferred to the transconjugant. Transposition of and mcr-1-carrying element from a transferable IncHI2-plasmid was observed among two CCREC clones isolated within 4 days of each other. The occurrence of multidrug-resistant CCREC capable of transferring their antibiotic resistance genotypes via conjugative plasmids is alarming. WWTPs bring bacteria from different sources together, providing opportunities for horizontal exchange of DNA among compatible hosts. Further dissemination of the colistin-, carbapenem-, or both colistin- and carbapenem resistant E. coli could lead to a serious threat to public health.
Collapse
Affiliation(s)
- Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| |
Collapse
|
6
|
Yang M, Xu G, Ruan Z, Wang Y. Genomic Characterization of a Multidrug-Resistant Escherichia coli Isolate Co-Carrying blaNDM-5 and blaCTX-M-14 Genes Recovered from a Pediatric Patient in China. Infect Drug Resist 2022; 15:6405-6412. [PMID: 36345540 PMCID: PMC9636857 DOI: 10.2147/idr.s388797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Public health is seriously threatened by the rise of carbapenem-resistant Enterobacterales (CRE). However, the genomic characteristics of CRE detected in pediatric patients are largely unknown. Here, we reported the genomic characteristics of a multidrug-resistant Escherichia coli strain containing the plasmid-borne blaNDM-5 and blaCTX-M-14 genes recovered from a Chinese pediatric patient. Methods The genome sequence of E. coli strain B379 was determined using Illumina NovaSeq 6000 and Oxford Nanopore MinION. Multiple bioinformatics tools were used to annotate the genome sequence, identify antimicrobial resistance genes and plasmid replicons and perform the in silico multilocus sequence typing (MLST) analysis. Using BacWGSTdb 2.0 server, a core genome MLST (cgMLST) comparison was made between E. coli B379 and all ST746 E. coli strains downloaded from the public database. Results The E. coli B379 genome sequence is comprised of six contigs totaling 5,152,502 bp, including one chromosome and five plasmids. Nineteen antimicrobial resistance genes were predicted. The blaNDM-5, which is located on a 46,161 bp IncX3 plasmid and the blaCTX-M-14 gene which is located on a 147,204 bp IncFII/IncFIA/IncFIB plasmid are two examples of these 19 genes. E. coli B379 was resistant to ampicillin, ampicillin/sulbactam, ceftriaxone, ceftazidime, imipenem, cefepime, ciprofloxacin, ertapenem, trimethoprim-sulfamethoxazole. This isolate belonged to ST746 and the closest relative was another one originating from a human material specimen in Denmark, which differed by 273 cgMLST alleles. Conclusion Our study reports the emergence of a multidrug-resistant E. coli strain co-carrying blaNDM-5 and blaCTX-M-14 recovered from a pediatric patient in China. These data would help us better understand the prevalence, genetic characteristics, and mechanisms of antimicrobial resistance of this recently identified multidrug-resistant bacteria in children.
Collapse
Affiliation(s)
- Min Yang
- Department of Ambulatory Surgery, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Gufeng Xu
- Department of Ambulatory Surgery, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhi Ruan, Sir Run Run Shaw hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People’s Republic of China, Email
| | - Yue Wang
- Department of Ambulatory Surgery, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Yue Wang, Women’s hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, Zhejiang, 310000, People’s Republic of China, Email
| |
Collapse
|
7
|
Zhao J, Zheng B, Xu H, Li J, Sun T, Jiang X, Liu W. Emergence of a NDM-1-producing ST25 Klebsiella pneumoniae strain causing neonatal sepsis in China. Front Microbiol 2022; 13:980191. [PMID: 36338063 PMCID: PMC9630351 DOI: 10.3389/fmicb.2022.980191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) seriously threaten the efficacy of modern medicine with a high associated mortality rate and unprecedented transmission rate. In this study, we isolated a clinical K. pneumoniae strain DY1928 harboring blaNDM-1 from a neonate with blood infection. Antimicrobial susceptibility testing indicated that DY1928 was resistant to various antimicrobial agents, including meropenem, imipenem, ceftriaxone, cefotaxime, ceftazidime, cefepime, piperacillin-tazobactam, and amoxicillin-clavulanate. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE), southern blot and conjugation experiment revealed that the blaNDM-1 gene was located on a conjugative plasmid of IncA/C2 type with a 147.9 kb length. Whole-genome sequencing showed that there was a conservative structure sequence (blaNDM-1-ble-trpF-dsbD) located downstream of the blaNDM-1 gene. Multilocus sequence typing (MLST) classified DY1928 as ST25, which was a hypervirulent K. pneumoniae type. Phylogenetic analysis of genomic data from all ST25 K. pneumoniae strains available in the NCBI database suggested that all blaNDM-1 positive strains were isolated in China and had clinical origins. A mouse bloodstream infection model was constructed to test the virulence of DY1928, and 11 K. pneumoniae strains homologous to DY1928 were isolated from the feces of infected mice. Moreover, we found that DY1928 had a tendency to flow from the blood into the intestine in mice and caused multiple organ damage. To our knowledge, this is the first study to report an infection caused by blaNDM-1-positive ST25 K. pneumoniae in the neonatal unit. Our findings indicated that stricter surveillance and more effective actions were needed to reduce the risk of disseminating such K. pneumoniae strains in clinical settings, especially in neonatal wards.
Collapse
Affiliation(s)
- Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tengfei Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xiawei Jiang,
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Wenhong Liu,
| |
Collapse
|
8
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
9
|
Shin H, Kim Y, Raza S, Unno T, Ryu SH, Hur HG. Dynamics of Genotypic and Phenotypic Antibiotic Resistance in a Conventional Wastewater Treatment Plant in 2 Years. Front Microbiol 2022; 13:898339. [PMID: 36033841 PMCID: PMC9403409 DOI: 10.3389/fmicb.2022.898339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are considered a sink and a source of antibiotic resistance. In this study, we applied both culture-dependent and SmartChip-based culture-independent approaches for the investigation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) at Jungnang (JN), located in the Han River, Seoul, South Korea, for 2 years, i.e., 2017 and 2018. The JN WWTP reduced the diversity and abundance of ARB and ARGs but was not sufficient for removing them all. Interestingly, through the treatment process in the JN WWTP, the composition of diverse multidrug-resistant (MDR) bacteria was concentrated mainly into some genera of the Gammaproteobacteria class (Citrobacter, Escherichia-Shigella, and Stenotrophomonas), which could be key carriages to spread ARGs into the environments. In addition, SmartChip analyses showed that the relative abundance and the number of ARGs were significantly decreased from the influents to the effluents in both 2017 and 2018. SmartChip analyses for 2 years also allowed to notify the core ARGs in the influents and the effluents with the presence of clinically relevant core ARGs, such as vanC, blaOXA, and blaNDM, which persisted in the treatment process. Considering diverse bacterial mechanisms for exchanging and transferring ARGs, the occurrence of MDR bacteria and core ARGs could be a source for the blooming of the antibiotic resistome in the WWTP and nearby environments.
Collapse
Affiliation(s)
- Hanseob Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yeonghyeon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Shahbaz Raza
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju-si, South Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju-si, South Korea
| | - Song-Hee Ryu
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju-gun, South Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- *Correspondence: Hor-Gil Hur,
| |
Collapse
|
10
|
Kaewnirat K, Chuaychob S, Chukamnerd A, Pomwised R, Surachat K, Phoo MTP, Phaothong C, Sakunrang C, Jeenkeawpiam K, Hortiwakul T, Charernmak B, Chusri S. In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens. Infect Drug Resist 2022; 15:1777-1791. [PMID: 35437346 PMCID: PMC9013254 DOI: 10.2147/idr.s357965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose The spread of New Delhi metallo-β-lactamase (NDM) encoded by the blaNDM gene has been a global health crisis for many years. Most of blaNDM-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against blaNDM-harboring carbapenem-resistant Escherichia coli (CREC) and to characterize the whole-genome and plasmid sequences of these pathogens. Methods Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring blaNDM on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools. Results Of the E. coli 38 isolates, only 3 isolates contained the blaNDM-1 gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against blaNDM-1-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many β-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the blaNDM-1-bearing IncN2 plasmid, were present in these isolates. Conclusion Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring blaNDM-1 on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of blaNDM-1-harboring CREC isolates. The linkages between blaNDM-1-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.
Collapse
Affiliation(s)
- Kalyarat Kaewnirat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surachat Chuaychob
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - May Thet Paing Phoo
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanitnart Phaothong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Correspondence: Sarunyou Chusri, Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand, Tel +66 8 973 40446, Email
| |
Collapse
|
11
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
12
|
De R. Mobile Genetic Elements of Vibrio cholerae and the Evolution of Its Antimicrobial Resistance. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.691604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Vibrio cholerae (VC) is the causative agent of the severe dehydrating diarrheal disease cholera. The primary treatment for cholera is oral rehydration therapy (ORT). However, in case of moderate to severe dehydration, antibiotics are administered to reduce morbidity. Due to the emergence of multidrug resistant (MDR) strains of VC routinely used antibiotics fail to be effective in cholera patients. Antimicrobial resistance (AMR) is encoded in the genome of bacteria and is usually acquired from other organisms cohabiting in the environment or in the gut with which it interacts in the gut or environmental niche. The antimicrobial resistance genes (ARGs) are usually borne on mobile genetic elements (MGEs) like plasmids, transposons, integrons and SXT constin. Horizontal gene transfer (HGT) helps in the exchange of ARGs among bacteria leading to dissemination of AMR. In VC the acquisition and loss of AMR to many antibiotics have been found to be a dynamic process. This review describes the different AMR determinants and mechanisms of resistance that have been discovered in VC. These ARGs borne usually on MGEs have been recovered from isolates associated with past and present epidemics worldwide. These are responsible for resistance of VC to common antibiotics and are periodically lost and gained contributing to its genetic evolution. These resistance markers can be routinely used for AMR surveillance in VC. The review also presents a precise perspective on the importance of the gut microbiome in the emergence of MDR VC and concludes that the gut microbiome is a potential source of molecular markers and networks which can be manipulated for the interception of AMR in the future.
Collapse
|