1
|
Blais MA, Vincent WF, Vigneron A, Labarre A, Matveev A, Coelho LF, Lovejoy C. Diverse winter communities and biogeochemical cycling potential in the under-ice microbial plankton of a subarctic river-to-sea continuum. Microbiol Spectr 2024; 12:e0416023. [PMID: 38511950 PMCID: PMC11210273 DOI: 10.1128/spectrum.04160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Winter conditions greatly alter the limnological properties of lotic ecosystems and the availability of nutrients, carbon, and energy resources for microbial processes. However, the composition and metabolic capabilities of winter microbial communities are still largely uncharacterized. Here, we sampled the winter under-ice microbiome of the Great Whale River (Nunavik, Canada) and its discharge plume into Hudson Bay. We used a combination of 16S and 18S rRNA gene amplicon analysis and metagenomic sequencing to evaluate the size-fractionated composition and functional potential of the microbial plankton. These under-ice communities were diverse in taxonomic composition and metabolically versatile in terms of energy and carbon acquisition, including the capacity to carry out phototrophic processes and degrade aromatic organic matter. Limnological properties, community composition, and metabolic potential differed between shallow and deeper sites in the river, and between fresh and brackish water in the vertical profile of the plume. Community composition also varied by size fraction, with a greater richness of prokaryotes in the larger size fraction (>3 µm) and of microbial eukaryotes in the smaller size fraction (0.22-3 µm). The freshwater communities included cosmopolitan bacterial genera that were previously detected in the summer, indicating their persistence over time in a wide range of physico-chemical conditions. These observations imply that the microbial communities of subarctic rivers and their associated discharge plumes retain a broad taxonomic and functional diversity throughout the year and that microbial processing of complex terrestrial materials persists beneath the ice during the long winter season. IMPORTANCE Microbiomes vary over multiple timescales, with short- and long-term changes in the physico-chemical environment. However, there is a scarcity of data and understanding about the structure and functioning of aquatic ecosystems during winter relative to summer. This is especially the case for seasonally ice-covered rivers, limiting our understanding of these ecosystems that are common throughout the boreal, subpolar, and polar regions. Here, we examined the winter under-ice microbiome of a Canadian subarctic river and its entry to the sea to characterize the taxonomic and functional features of the microbial community. We found substantial diversity in both composition and functional capabilities, including the capacity to degrade complex terrestrial compounds, despite the constraints imposed by a prolonged seasonal ice-cover and near-freezing water temperatures. This study indicates the ecological complexity and importance of winter microbiomes in ice-covered rivers and the coastal marine environment that they discharge into.
Collapse
Affiliation(s)
- Marie-Amélie Blais
- Département de Biologie, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Centre for Northern Studies (CEN), Université Laval, Quebec City, Quebec, Canada
- Takuvik Joint International Laboratory, Université Laval, Quebec City, Quebec, Canada
| | - Warwick F. Vincent
- Département de Biologie, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Centre for Northern Studies (CEN), Université Laval, Quebec City, Quebec, Canada
- Takuvik Joint International Laboratory, Université Laval, Quebec City, Quebec, Canada
| | - Adrien Vigneron
- Département de Biologie, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Centre for Northern Studies (CEN), Université Laval, Quebec City, Quebec, Canada
- Takuvik Joint International Laboratory, Université Laval, Quebec City, Quebec, Canada
| | - Aurélie Labarre
- Département de Biologie, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Takuvik Joint International Laboratory, Université Laval, Quebec City, Quebec, Canada
- Québec-Océan, Université Laval, Quebec City, Quebec, Canada
| | - Alex Matveev
- Département de Biologie, Université Laval, Quebec City, Quebec, Canada
- Centre for Northern Studies (CEN), Université Laval, Quebec City, Quebec, Canada
- Takuvik Joint International Laboratory, Université Laval, Quebec City, Quebec, Canada
| | - Lígia Fonseca Coelho
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- Takuvik Joint International Laboratory, Université Laval, Quebec City, Quebec, Canada
- Québec-Océan, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Amill F, Gauthier J, Rautio M, Derome N. Characterization of gill bacterial microbiota in wild Arctic char ( Salvelinus alpinus) across lakes, rivers, and bays in the Canadian Arctic ecosystems. Microbiol Spectr 2024; 12:e0294323. [PMID: 38329329 PMCID: PMC10923216 DOI: 10.1128/spectrum.02943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
Teleost gill mucus has a highly diverse microbiota, which plays an essential role in the host's fitness and is greatly influenced by the environment. Arctic char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multiple stressors in the Arctic, including water chemistry modifications, that could negatively impact the gill microbiota dynamics related to the host's health. In the context of increasing environmental disturbances, we aimed to characterize the taxonomic distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic char in the Canadian Arctic in order to identify active bacterial composition that correlates with environmental factors. For this purpose, a total of 140 adult anadromous individuals were collected from rivers, lakes, and bays belonging to five Inuit communities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and Nunavik) during spring (May) and autumn (August). Various environmental factors were collected, including latitudes, water and air temperatures, oxygen concentration, pH, dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic distribution of transcriptionally active taxa within the gill microbiota was quantified by 16S rRNA gene transcripts sequencing. The results showed differential bacterial activity between the different geographical locations, explained by latitude, salinity, and, to a lesser extent, air temperature. Network analysis allowed the detection of a potential dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both showing the lowest alpha diversity and connectivity between taxa.IMPORTANCEThis paper aims to decipher the complex relationship between Arctic char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid is widespread in the Canadian Arctic and is the main protein and polyunsaturated fatty acids source for Inuit people. The influence of environmental parameters on gill microbiota in wild populations remains poorly understood. However, assessing the Arctic char's active gill bacterial community is essential to look for potential pathogens or dysbiosis that could threaten wild populations. Here, we concluded that Arctic char gill microbiota was mainly influenced by latitude and air temperature, the latter being correlated with water temperature. In addition, a dysbiosis signature detected in gill microbiota was potentially associated with poor fish health status recorded in these disturbed environments. With those results, we hypothesized that rapid climate change and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill microbiota, affecting their survival.
Collapse
Affiliation(s)
- Flora Amill
- Institute of Integrative and Systems Biology, Laval University, Quebec, Canada
| | - Jeff Gauthier
- Institute of Integrative and Systems Biology, Laval University, Quebec, Canada
| | - Milla Rautio
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Nicolas Derome
- Institute of Integrative and Systems Biology, Laval University, Quebec, Canada
| |
Collapse
|
3
|
Wuerthner VP, Hua J, Hernández‐Gómez O. Life stage and proximity to roads shape the skin microbiota of eastern newts (Notophthalmus viridescens). Environ Microbiol 2022; 24:3954-3965. [PMID: 35355399 PMCID: PMC9790580 DOI: 10.1111/1462-2920.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Host-associated microbiomes play an essential role in the health of organisms, including immune system activation, metabolism and energy uptake. It is well established that microbial communities differ depending on the life stage and natural history of the organism. However, the effects of life stage and natural history on microbial communities may also be influenced by human activities. We investigated the effects of amphibian life stage (terrestrial eft vs. aquatic adult) and proximity to roadways on newt skin bacterial communities. We found that the eft and adult life stages differed in bacterial community composition; however, the effects of roads on community composition were more evident in the terrestrial eft stage compared to the aquatic adult stage. Terrestrial efts sampled close to roads possessed richer communities than those living further away from the influence of roads. When accounting for amplicon sequence variants with predicted antifungal capabilities, in the adult life stage, we observed a decrease in anti-fungal bacteria with distance to roads. In contrast, in the eft stage, we found an increase in anti-fungal bacteria with distance to roads. Our results highlight the need to consider the effects of human activities when evaluating how host-associated microbiomes differ across life stages of wildlife.
Collapse
Affiliation(s)
| | - Jessica Hua
- Department of Biological SciencesBinghamton UniversityBinghamtonNY,Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI
| | - Obed Hernández‐Gómez
- Department of Environmental Sciences, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCA,Department of Natural Sciences and MathematicsDominican University of CaliforniaSan RafaelCA
| |
Collapse
|
4
|
Obieze CC, Wani GA, Shah MA, Reshi ZA, Comeau AM, Khasa DP. Anthropogenic activities and geographic locations regulate microbial diversity, community assembly and species sorting in Canadian and Indian freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154292. [PMID: 35248630 DOI: 10.1016/j.scitotenv.2022.154292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Freshwater lakes are important reservoirs and sources of drinking water globally. However, the microbiota, which supports the functionality of these ecosystems is threatened by the influx of nutrients, heavy metals and other toxic chemical substances from anthropogenic activities. The influence of these factors on the diversity, assembly mechanisms and co-occurrence patterns of bacterial communities in freshwater lakes is not clearly understood. Hence, samples were collected from six different impacted lakes in Canada and India and examined by 454-pyrosequencing technology. The trophic status of these lakes was determined using specific chemical parameters. Our results revealed that bacterial diversity and community composition was altered by both the lake water chemistry and geographic distance. Anthropogenic activities pervasively influenced species distribution. Dispersal limitation (32.3%), homogenous selection (31.8%) and drift (20%) accounted for the largest proportions of the bacterial community assembly mechanisms. Homogenous selection increased in lakes with higher nutrient concentration, while stochasticity reduced. Community functional profiles revealed that deterministic processes dominated the assembly mechanisms of phylotypes with higher potential for biodegradation, while stochasticity dominated the assembly of phylotypes with potential for antimicrobial resistance. Bacteroidota (44%) and Proteobacteria (34%) were the most abundant phyla. Co-occurrence network analysis revealed that complexity increased in more impacted lakes, while competition and the nature of anthropogenic activity contributed to species sorting. Overall, this study demonstrates that bacterial community changes in freshwater lakes are linked to anthropogenic activities, with corresponding consequences on the distribution of phylotypes of environmental and human health interest.
Collapse
Affiliation(s)
- Chinedu C Obieze
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada.
| | - Gowher A Wani
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada; Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - André M Comeau
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - Damase P Khasa
- Centre for Forest Research, Institute of Integrative Biology and Systems and Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
5
|
Freyria NJ, Kuo A, Chovatia M, Johnson J, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C. Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Commun Biol 2022; 5:500. [PMID: 35614207 PMCID: PMC9133084 DOI: 10.1038/s42003-022-03461-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8. Our results show a bracketed response of differential gene expression when the cultures were exposed to progressively decreasing salinity. Key genes associated with salinity changes were involved in specific metabolic pathways, transcription factors and regulators, protein kinases, carbohydrate active enzymes, and inorganic ion transporters. The pelagophyte seemed to use a strategy involving overexpression of Na+-H+ antiporters and Na+ -Pi symporters as salinity decreases, but the K+ channel complex at higher salinities. Specific adaptation to cold saline arctic conditions was seen with differential expression of several antifreeze proteins, an ice-binding protein and an acyl-esterase involved in cold adaptation.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connie Lovejoy
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| |
Collapse
|
6
|
Road Salt versus Urban Snow Effects on Lake Microbial Communities. Microorganisms 2022; 10:microorganisms10040803. [PMID: 35456853 PMCID: PMC9026421 DOI: 10.3390/microorganisms10040803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Freshwater salinization is an ongoing concern for north temperate lakes; however, little is known about its impacts on microbial communities, particularly for bacteria. We tested the hypotheses that road de-icing salt induces changes in the microbial community structure of lake plankton, and that changes due to chloride would differ from those due to urban snowmelt because of additional chemicals in the snowmelt. In a laboratory incubator experiment, an overwintering plankton community in lake water was exposed for two weeks to either NaCl or municipal road snow with the same level of chloride. Microbial community structure as determined by 16S (prokaryotes) and 18S (eukaryotes) rRNA transcript analysis showed changes in response to the chloride-only enrichment, with some rare taxa becoming more prominent. Consistent with our hypothesis, the salt and the snow treatments induced different community changes. These results indicate that ecotoxicology assays based on a single salt addition may not reflect the in situ effects of salt-contaminated urban snow, and that the combined chemical effects of urban snowmelt require direct testing.
Collapse
|
7
|
Blais MA, Matveev A, Lovejoy C, Vincent WF. Size-Fractionated Microbiome Structure in Subarctic Rivers and a Coastal Plume Across DOC and Salinity Gradients. Front Microbiol 2022; 12:760282. [PMID: 35046910 PMCID: PMC8762315 DOI: 10.3389/fmicb.2021.760282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the microbial diversity of rivers that flow across the changing subarctic landscape. Using amplicon sequencing (rRNA and rRNA genes) combined with HPLC pigment analysis and physicochemical measurements, we investigated the diversity of two size fractions of planktonic Bacteria, Archaea and microbial eukaryotes along environmental gradients in the Great Whale River (GWR), Canada. This large subarctic river drains an extensive watershed that includes areas of thawing permafrost, and discharges into southeastern Hudson Bay as an extensive plume that gradually mixes with the coastal marine waters. The microbial communities differed by size-fraction (separated with a 3-μm filter), and clustered into three distinct environmental groups: (1) the GWR sites throughout a 150-km sampling transect; (2) the GWR plume in Hudson Bay; and (3) small rivers that flow through degraded permafrost landscapes. There was a downstream increase in taxonomic richness along the GWR, suggesting that sub-catchment inputs influence microbial community structure in the absence of sharp environmental gradients. Microbial community structure shifted across the salinity gradient within the plume, with changes in taxonomic composition and diversity. Rivers flowing through degraded permafrost had distinct physicochemical and microbiome characteristics, with allochthonous dissolved organic carbon explaining part of the variation in community structure. Finally, our analyses of the core microbiome indicated that while a substantial part of all communities consisted of generalists, most taxa had a more limited environmental range and may therefore be sensitive to ongoing change.
Collapse
Affiliation(s)
- Marie-Amélie Blais
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Alex Matveev
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Québec-Océan, Université Laval, Quebec City, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Spieck E, Wegen S, Keuter S. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl Microbiol Biotechnol 2021; 105:7123-7139. [PMID: 34508283 PMCID: PMC8494671 DOI: 10.1007/s00253-021-11487-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023]
Abstract
Abstract Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biological oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are fastidious microorganisms that are highly sensitive against disturbances. One important finding with relevance for nitrogen removal systems was the discovery of the mainly cold-adapted Cand. Nitrotoga, whose activity seems to be essential for the recovery of nitrite oxidation in wastewater treatment plants at low temperatures, e.g., during cold seasons. Several new strains of this genus have been recently described and ecophysiologically characterized including genome analyses. With increasing diversity, also mesophilic Cand. Nitrotoga representatives have been detected in activated sludge. This review summarizes the natural distribution and driving forces defining niche separation in artificial nitrification systems. Further critical aspects for the competition with Nitrospira and Nitrobacter are discussed. Knowledge about the physiological capacities and limits of Cand. Nitrotoga can help to define physico-chemical parameters for example in reactor systems that need to be run at low temperatures. Key points • Characterization of the psychrotolerant nitrite oxidizer Cand. Nitrotoga • Comparison of the physiological features of Cand. Nitrotoga with those of other NOB • Identification of beneficial environmental/operational parameters for proliferation Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11487-5.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Simone Wegen
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|