1
|
He N, Wang Z, Lei L, Chen C, Qin Y, Tang J, Dai K, Xu H. Enhancing high-efficient cadmium biosorption of Escherichia coli via cell surface displaying metallothionien CUP1. ENVIRONMENTAL TECHNOLOGY 2025; 46:1021-1030. [PMID: 39016212 DOI: 10.1080/09593330.2024.2375006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Cadmium (Cd) is one of the common heavy metal pollutants in soil, which can induce various diseases and pose a serious threat to human health. Metallothioneins (MTs) are well-known for their excellent metal binding ability due to a high content of cysteine, which has great potential for heavy metal chelation. In this study, we used the Escherichia coli (E. coli) surface display system LPP-OmpA to construct a recombinant plasmid pBSD-LCF encoding LPP-OmpA-CUP1-Flag fusion protein. Then we displayed the metallothionein CUP1 from Saccharomyces cerevisiae on E. coli DH5α surface for Cd removing. The feasibility of surface display of metallothionein CUP1 in recombinant E. coli DH5α (pBSD-LCF) by Lpp-OmpA system was proved by flow cytometry and western blot analysis, and the specificity of the fusion protein in the recombinant strain was also verified. The results showed that the Cd2+ resistance capacity of DH5α (pBSD-LCF) was highly enhanced by about 200%. Fourier-transform infrared spectroscopy showed that sulfhydryl and sulfonyl groups were involved in Cd2+ binding to cell surface of DH5α (pBSD-LCF). Meanwhile, Cd removal rate by DH5α (pBSD-LCF) was promoted to 95.2%. Thus, the recombinant strain E. coli DH5α (pBSD-LCF) can effectively chelate environmental metals, and the cell surface expression of metallothionein on E. coli can provide new ideas and directions for heavy metals remediation.
Collapse
Affiliation(s)
- Nan He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Changxuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Yixian Qin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Jingxiang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Kecheng Dai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Holland K, Blazeck J. High throughput mutagenesis and screening for yeast engineering. J Biol Eng 2022; 16:37. [PMID: 36575525 PMCID: PMC9793380 DOI: 10.1186/s13036-022-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
The eukaryotic yeast Saccharomyces cerevisiae is a model host utilized for whole cell biocatalytic conversions, protein evolution, and scientific inquiries into the pathogenesis of human disease. Over the past decade, the scale and pace of such studies has drastically increased alongside the advent of novel tools for both genome-wide studies and targeted genetic mutagenesis. In this review, we will detail past and present (e.g., CRISPR/Cas) genome-scale screening platforms, typically employed in the context of growth-based selections for improved whole cell phenotype or for mechanistic interrogations. We will further highlight recent advances that enable the rapid and often continuous evolution of biomolecules with improved function. Additionally, we will detail the corresponding advances in high throughput selection and screening strategies that are essential for assessing or isolating cellular and protein improvements. Finally, we will describe how future developments can continue to advance yeast high throughput engineering.
Collapse
Affiliation(s)
- Kendreze Holland
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA ,grid.213917.f0000 0001 2097 4943Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia USA
| | - John Blazeck
- grid.213917.f0000 0001 2097 4943Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia USA ,grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia USA
| |
Collapse
|