1
|
Li Y, Yang Q, Chen M, Cai H, Fang L, Zhou J, Weng R, Ni H, Jiang Y, Hua X, Yu Y. Decadal Evolution of KPC-related plasmids in Pseudomonas aeruginosa high-risk clone ST463 in Zhejiang, China. Commun Biol 2024; 7:1646. [PMID: 39702826 DOI: 10.1038/s42003-024-07337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase-producing Pseudomonas aeruginosa (KPC-PA) isolates have quickly expanded in China, especially the high-risk clone ST463. We aimed to explore the evolution of KPC-related plasmids driving ST463 clone success. Whole-genome sequencing of 1258 clinical P. aeruginosa strains (2011-2020) identified 106 ST463-PA isolates, with a KPC prevalence of 90.6%. Early on (2011-2012), ST463-PA obtained the KPC-encoding type II (pT2-KPC) or type I plasmid (pT1-KPC) to overcome carbapenem stress. Between 2012 and 2017, pT1-KPC plasmid dominated due to its lower fitness costs and IS26-driven blaKPC amplification ability. By 2017-2020, large fragment deletions in pT1-KPC formed pT1del-KPC plasmid. It conferred even lower fitness costs, enhanced blaKPC-2 gene stability, and greater copy-number flexibility, while maintaining horizontal transmission ability. Consequently, pT1del-KPC plasmid finally succeeded, making ST463 the dominant ST in China. Our findings highlight evolutionary pressures driving ST463 dominance and emphasize the need for targeted strategies to control its spread and antibiotic resistance development.
Collapse
Affiliation(s)
- Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minhua Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Li Fang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hanming Ni
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Zhang L, Xu Q, Tan FC, Deng Y, Hakki M, Shelburne SA, Kirienko NV. Role of R5 Pyocin in the Predominance of High-Risk Pseudomonas aeruginosa Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616987. [PMID: 39416193 PMCID: PMC11483031 DOI: 10.1101/2024.10.07.616987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Infections with antimicrobial resistant pathogens, such as Pseudomonas aeruginosa, are a frequent occurrence in healthcare settings. Human P. aeruginosa infections are predominantly caused by a small number of sequence types (ST), such as ST235, ST111, and ST175. Although ST111 is recognized as one of the most prevalent high-risk P. aeruginosa clones worldwide and frequently exhibits multidrug-resistant or extensively drug-resistant phenotypes, the basis for this dominance remains unclear. In this study, we used a genome-wide transposon insertion library screen to discover that the competitive advantage of ST111 strains over certain non-ST111 strains is through production of R pyocins. We confirmed this finding by showing that competitive dominance was lost by ST111 mutants with R pyocin gene deletions. Further investigation showed that sensitivity to ST111 R pyocin (specifically R5 pyocin) is caused by deficiency in the O-antigen ligase waaL, which leaves lipopolysaccharide (LPS) bereft of O antigen, enabling pyocins to bind the LPS core. In contrast, sensitivity of waaL mutants to R1 or R2 pyocins depended on additional genomic changes. In addition, we found the PA14 mutants in lipopolysaccharide biosynthesis (waaL, wbpL, wbpM) that cause high susceptibility to R pyocins also exhibit poor swimming motility. Analysis of 5,135 typed P. aeruginosa strains revealed that several international, high-risk sequence types (including ST235, ST111, and ST175) are enriched for R5 pyocin production, indicating a correlation between these phenotypes and suggesting a novel approach for evaluating risk from emerging prevalent P. aeruginosa strains. Overall, our study sheds light on the mechanisms underlying the dominance of ST111 strains and highlighting the role of waaL in extending spectrum of R pyocin susceptibility.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Filemon C Tan
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Yanhan Deng
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Samuel A. Shelburne
- Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston TX
| | | |
Collapse
|
3
|
Xie X, Liu Z, Huang J, Wang X, Tian Y, Xu P, Zheng G. Molecular epidemiology and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a hospital in Fujian, China. Front Microbiol 2024; 15:1431154. [PMID: 39301190 PMCID: PMC11410579 DOI: 10.3389/fmicb.2024.1431154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
The worldwide spread of Pseudomonas aeruginosa, especially carbapenem-resistant P. aeruginosa (CRPA), poses a serious threat to global public health. In this research, we collected and studied the clinical prevalence, molecular epidemiology, and resistance mechanisms of CRPA in Fujian, China. Among 167 non-duplicated P. aeruginosa isolates collected during 2019-2021, strains from respiratory specimens and wound secretions of older males in the intensive care unit dominated. Ninety-eight isolates (58.7 %) were resistant to at least one tested antibiotic, among which 70 strains were carbapenem-resistant. Moleclar typing of the CRPA isolates revealed they were highly divergent, belonging to 46 different sequence types. It is noteworthy that two previously reported high risk clones, ST1971 specific to China and the globally prevalent ST357, were found. Several carbapenem resistance-related characteristics were also explored in 70 CRPA isolates. Firstly, carbapenemase was phenotypically positive in 22.9 % of CRPA, genetically predominant by metallo-β-lactamase (MBL) and co-carrige of different carbapenemase genes. Then, mutations of the carbapenem-specific porins oprD and opdP were commonly observed, with frequencies of 97.1% and 100.0%, respectively. Furthermore, the biofilm formation and relative transcription levels of 8 multidrug efflux pump genes were also found to be increased in 48.6 % and 72.9 % of CRPA isolates compared to the reference strain PAO1. These findings will help fill the data gaps in molecular characteristics of CRPA on the southeastern coast of China and emphasize the urgent need for data-based specific stewardship for antipseudomonal practices to prevent the dissemination of CRPA.
Collapse
Affiliation(s)
- Xueqin Xie
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Provincial Key Laboratory of Functional and Clinical Translational Medicine of Universities in Fujian, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Zhou Liu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Provincial Key Laboratory of Functional and Clinical Translational Medicine of Universities in Fujian, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Jingyan Huang
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Xueting Wang
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Yuting Tian
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Pinying Xu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Gangsen Zheng
- Xiamen Key Laboratory of Genetic Testing, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Hu H, Wang Y, Sun J, Wang Y, Zhou J, Shi Q, Han X, Jiang Y, Wu D, Huang X, Yu Y. Risk factors and molecular epidemiology of intestinal colonization by carbapenem-resistant Gram-negative bacteria in patients with hematological diseases: a multicenter case‒control study. Microbiol Spectr 2024; 12:e0429923. [PMID: 38847538 PMCID: PMC11218473 DOI: 10.1128/spectrum.04299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/25/2024] [Indexed: 07/03/2024] Open
Abstract
Patients with hematological diseases are considered to be at high risk for intestinal colonization by carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the epidemiological data regarding risk factors and molecular characteristics of intestinal colonized CR-GNB isolates in this population are insufficient in China. A multicenter case‒control study involving 4,641 adult patients with hematological diseases from 92 hospitals across China was conducted. Following culture of collected rectal swabs, mass spectrometry and antimicrobial susceptibility tests were performed to identify GNB species and CR phenotype. Risk factors were assessed through retrospective clinical information. Whole-genome sequencing was used to analyze the molecular characteristics of CR-GNB isolates. This trial is registered with ClinicalTrials.gov as NCT05002582. Our results demonstrated that among 4,641 adult patients, 10.8% had intestinal colonization by CR-GNB. Of these, 8.1% were colonized by carbapenem-resistant Enterobacterales (CRE), 2.6% were colonized by carbapenem-resistant Pseudomonas aeruginosa (CRPA), and 0.3% were colonized by carbapenem-resistant Acinetobacter baumannii (CRAB). The risk factors for CR-GNB colonization include male gender, acute leukemia, hematopoietic stem cell transplantation, β-lactam antibiotic usage, and the presence of non-perianal infections within 1 week. Compared with CRPA-colonized patients, patients using carbapenems were more likely to be colonized with CRE. NDM was the predominant carbapenemase in colonized CRE. This study revealed a high CR-GNB intestinal colonization rate among adult patients with hematological diseases in China, with CRE being the predominant one. Notably, a significant proportion of CRE exhibited metallo-β-lactamase production, indicating a concerning trend. These findings emphasize the importance of active screening for CR-GNB colonization in patients with hematological diseases.IMPORTANCECarbapenem-resistant Gram-negative bacteria (CR-GNB) has emerged as a significant threat to public health. Patients with hematological diseases are at high risk of CR-GNB infections due to their immunosuppressed state. CR-GNB colonization is an independent risk factor for subsequent infection. Understanding the risk factors and molecular characteristics of CR-GNB associated with intestinal colonization in patients with hematological diseases is crucial for empirical treatment, particularly in patients with febrile neutropenia. However, the epidemiology data are still insufficient, and our study aims to determine the intestinal colonization rate of CR-GNB, identify colonization risk factors, and analyze the molecular characteristics of colonized CR-GNB isolates.
Collapse
Affiliation(s)
- Huangdu Hu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, Lishui Central Hospital, Lishui, China
| | - Yuting Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Li J, Tang M, Liu Z, Wei Y, Xia F, Xia Y, Hu Y, Wang H, Zou M. Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob 2024; 23:13. [PMID: 38347529 PMCID: PMC10863134 DOI: 10.1186/s12941-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Recently, extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) isolates have been increasingly detected and posed great challenges to clinical anti-infection treatments. However, little is known about extensively resistant hypervirulent P. aeruginosa (XDR-hvPA). In this study, we investigate its epidemiological characteristics and provide important basis for preventing its dissemination. METHODS Clinical XDR-PA isolates were collected from January 2018 to January 2023 and identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; antibiotic susceptibility testing was performed by broth microdilution method, and minimum inhibitory concentrations (MICs) were evaluated. Virulence was evaluated using the Galleria mellonella infection model; molecular characteristics, including resistance genes, virulence genes, and homology, were determined using whole-genome sequencing. RESULTS A total of 77 XDR-PA strains were collected; 47/77 strains were XDR-hvPA. Patients aged > 60 years showed a significantly higher detection rate of XDR-hvPA than of XDR-non-hvPA. Among the 47 XDR-hvPA strains, 24 strains carried a carbapenemase gene, including blaGES-1 (10/47), blaVIM-2 (6/47), blaGES-14 (4/47), blaIMP-45 (2/47), blaKPC-2 (1/47), and blaNDM-14 (1/47). ExoU, exoT, exoY, and exoS, important virulence factors of PA, were found in 31/47, 47/47, 46/47, and 29/47 strains, respectively. Notably, two XDR-hvPA simultaneously co-carried exoU and exoS. Six serotypes (O1, O4-O7, and O11) were detected; O11 (19/47), O7 (13/47), and O4 (9/47) were the most prevalent. In 2018-2020, O4 and O7 were the most prevalent serotypes; 2021 onward, O11 (16/26) was the most prevalent serotype. Fourteen types of ST were detected, mainly ST235 (14/47), ST1158 (13/47), and ST1800 (7/47). Five global epidemic ST235 XDR-hvPA carried blaGES and showed the MIC value of ceftazidime/avibactam reached the susceptibility breakpoint (8/4 mg/L). CONCLUSIONS The clinical detection rate of XDR-hvPA is unexpectedly high, particularly in patients aged > 60 years, who are seemingly more susceptible to contracting this infection. Clonal transmission of XDR-hvPA carrying blaGES, which belongs to the global epidemic ST235, was noted. Therefore, the monitoring of XDR-hvPA should be strengthened, particularly for elderly hospitalized patients, to prevent its spread.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengli Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaojun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuhan Wei
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yubing Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Wu T, Zhang Z, Li T, Dong X, Wu D, Zhu L, Xu K, Zhang Y. The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiol Spectr 2024; 12:e0222423. [PMID: 38088541 PMCID: PMC10783026 DOI: 10.1128/spectrum.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The identification of decisive virulence-associated genes in highly pathogenic P. aeruginosa isolates in the clinic is essential for diagnosis and the start of appropriate treatment. Over the past decades, P. aeruginosa ST463 has spread rapidly in East China and is highly resistant to β-lactams. Given the poor clinical outcome caused by this phenotype, detailed information regarding its decisive virulence genes and factors affecting virulence expression needs to be deciphered. Here, we demonstrate that the T3SS effector ExoU has toxic effects on mammalian cells and is required for virulence in the murine bloodstream infection model. Moreover, a functional downstream SpcU is required for ExoU secretion and cytotoxicity. This work highlights the potential role of ExoU in the pathogenesis of disease and provides a new perspective for further research on the development of new antimicrobials with antivirulence ability.
Collapse
Affiliation(s)
- Tiantian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchuan Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Tong Li
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Dong
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijin Xu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
8
|
Li Y, Fang L, Dong M, Cai H, Hua X, Jiang Y, Yu Y, Yang Q. bla KPC-2 overexpression and bla GES-5 carriage as major imipenem/relebactam resistance mechanisms in Pseudomonas aeruginosa high-risk clones ST463 and ST235, respectively, in China. Antimicrob Agents Chemother 2023; 67:e0067523. [PMID: 37819082 PMCID: PMC10649045 DOI: 10.1128/aac.00675-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
Pseudomonas aeruginosa high-risk clones pose severe threats to public health. Here, we characterize the imipenem/relebactam (IR) resistance mechanisms in P. aeruginosa high-risk clones sequence type 235 (ST235) and ST463 in China. Minimum inhibitory concentrations (MICs) were determined, and Illumina short-read sequencing was performed for 1,168 clinical carbapenem-resistant P. aeruginosa (CRPA) isolates. The gene copy number and expression level were analyzed by Illumina sequencing depth and reverse transcription-quantitative PCR, respectively. Resistance conferred by bla GES-5 was evaluated by cloning experiments. ST463 and ST235 accounted for 9.8% (115/1,168) and 4.5% (53/1,168) of total isolates, respectively, and showed high frequencies of extensively drug-resistant and difficult-to-treat resistant phenotypes. The overall IR-resistant rate in CRPA was 21.0% (245/1,168). However, the IR resistance rate was 81.7% (94/115) in ST463-PA and 52.8% (28/53) in ST235-PA. Of the ST463 isolates, 92.2% (106/115) were Klebsiella pneumoniae carbapenemase-producing P. aeruginosa (KPC-PA), and all 94 IR-resistant ST463-PA produced KPC-2. Compared to IR-susceptible ST463 KPC-2-PA, IR-resistant ST463 KPC-2-PA exhibited significantly higher bla KPC-2 copy numbers and expression levels. In ST463 KPC-2-PA, 16 mg/L relebactam resulted in additional fourfold reductions in imipenem MIC50/90 values compared to 4 mg/L relebactam. In ST235, 1.9% (1/53) carried bla IMP carbapenemase and 54.7% (29/53) carried bla GES carbapenemase. Other than the IMP producer, all 27 IR-resistant ST235-PA produced GES-5. Cloning experiments revealed that imipenem resistance in bla GES-5-carrying PAO1 transformants was generally unaffected by relebactam. In conclusion, IR-resistant CRPA isolates in China were mainly distributed in P. aeruginosa high-risk clones ST463 and ST235. The major underlying IR resistance mechanisms were bla KPC-2 overexpression and bla GES-5 carriage.
Collapse
Affiliation(s)
- Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Li Fang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Mengqian Dong
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
10
|
Zhu Y, Kang Y, Zhang H, Yu W, Zhang G, Zhang J, Kang W, Duan S, Xu Y, Yang Q. Emergence of ST463 exoU-Positive, Imipenem-Nonsusceptible Pseudomonas aeruginosa Isolates in China. Microbiol Spectr 2023; 11:e0010523. [PMID: 37314344 PMCID: PMC10434062 DOI: 10.1128/spectrum.00105-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
This study investigated the resistance mechanisms and the distribution and proportions of virulence genes, including exoU, in 182 imipenem-nonsusceptible Pseudomonas aeruginosa (INS-PA) strains collected from China in 2019. There was no obvious prevalent sequence type or concentrated evolutionary multilocus sequence typing (MLST) type on the INS-PA phylogenetic tree in China. All of the INS-PA isolates harbored β-lactamases with/without other antimicrobial mechanisms, such as gross disruption of oprD and overexpression of efflux genes. Compared with exoU-negative isolates, exoU-positive isolates (25.3%, 46/182) presented higher virulence in A549 cell cytotoxicity assays. The southeast region of China had the highest proportion (52.2%, 24/46) of exoU-positive strains. The most frequent exoU-positive strains belonged to sequence type 463 (ST463) (23.9%, 11/46) and presented multiple resistance mechanisms and higher virulence in the Galleria mellonella infection model. The complex resistance mechanisms in INS-PA and the emergence of ST463 exoU-positive, multidrug-resistant P. aeruginosa strains in southeast China indicated a challenge that might lead to clinical treatment failure and higher mortality. IMPORTANCE This study investigates the resistance mechanisms and distribution and proportions of virulence genes of imipenem-nonsusceptible Pseudomonas aeruginosa (INS-PA) isolates in China in 2019. Harboring PDC and OXA-50-like genes is discovered as the most prevalent resistance mechanism in INS-PA, and the virulence of exoU-positive INS-PA isolates was significantly higher than that of exoU-negative INS-PA isolates. There was an emergence of ST463 exoU-positive INS-PA isolates in Zhejiang, China, most of which presented multidrug resistance and hypervirulence.
Collapse
Affiliation(s)
- Ying Zhu
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Kang
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Hui Zhang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Yu
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Zhang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Zhang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Simeng Duan
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiwen Yang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
An XDR Pseudomonas aeruginosa ST463 Strain with an IncP-2 Plasmid Containing a Novel Transposon Tn 6485f Encoding blaIMP-45 and blaAFM-1 and a Second Plasmid with Two Copies of blaKPC-2. Microbiol Spectr 2023; 11:e0446222. [PMID: 36651737 PMCID: PMC9927494 DOI: 10.1128/spectrum.04462-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The increased carbapenem resistance among Pseudomonas aeruginosa has become a serious health issue worldwide. We reported an extensively drug-resistant (XDR) P. aeruginosa PA30 isolate which belonged to sequence type ST463 and contained an IncP-2 plasmid (pPA30_1) carrying two genes, namely, blaIMP-45 and blaAFM-1, which encoded the metallo-β-lactamases AFM-1 and IMP-45, respectively. Additionally, the strain had a plasmid (pPA30_2) with two copies of the blaKPC-2 genes embedded. The plasmid pPA30_1 was highly similar to the previously reported plasmid pHS17-127, which has the same genetic architecture. This plasmid contained blaIMP-45, located in a second gene cassette of the integron In786, carried by a Tn1403-derivative transposon acquiring an ISCR27n3-blaAFM-1 structure. Interestingly, the transposon in pPA30_1 acquired an extra ISCR1-qnrVC6 module and formed a novel transposon, which was subsequently annotated as Tn6485f. The blaKPC-2 genes in pPA30_2 underwent duplication due to the inversion of the IS26-blaKPC-2-IS26 element, which resulted in two copies of blaKPC-2. IMPORTANCE The ST463 clone is an emerging high-risk sequence type that is spreading with blaKPC-2-containing plasmids. The core blaKPC-2 genetic platform is ISKpn27-blaKPC-2-ISKpn6 in almost all samples, and the adjacent region beyond the core platform varies by IS26-mediated inversion or duplication events, amplifying the blaKPC-2 gene copies. The ST463 P. aeruginosa strain PA30 in our study contains another two metallo-β-lactamase genes, namely, blaIMP-45 and blaAFM-1, in a novel transposon Tn6485f that is harbored by the IncP-2 megaplasmid. The pPA30_1 carrying blaIMP-45 and blaAFM-1 is highly related to pHS17-127 from the ST369 P. aeruginosa strain, indicating the putative dissemination of the megaplasmid between different clones.
Collapse
|
12
|
Hu Y, Zhu K, Jin D, Shen W, Liu C, Zhou H, Zhang R. Evaluation of IR Biotyper for carbapenem-resistant Pseudomonas aeruginosa typing and its application potential for the investigation of nosocomial infection. Front Microbiol 2023; 14:1068872. [PMID: 36846786 PMCID: PMC9947493 DOI: 10.3389/fmicb.2023.1068872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most common opportunistic pathogens causing severe nosocomial infections for its patterns of multidrug resistance, particularly for carbapenems. Timely epidemiological surveillance could greatly facilitate infection control of P. aeruginosa and many deadly pathogens alike. IR Biotyper (IRBT), is a novel real-time typing tool, based on a Fourier-transform infrared (FTIR) spectroscopy system. It is critical to comprehensively establish and evaluate the feasibility of IRBT in P. aeruginosa strain typing. In the current study, we first established standards and schemes for its routine laboratory application, and we found that Mueller-Hinton agar plates give better discriminatory power than blood agar plates. Data showed that the cut-off value of 0.15 with an additional 0.025 range was optimal. Secondly, 27 clinically isolated carbapenem-resistant P. aeruginosa (CRPA) strains collected from October 2010 to September 2011 were evaluated for typing effectiveness by comparing IRBT to the other commonly used typing methods, such as multi-locus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS)-based typing. When using WGS-based typing as the reference method, the typing method of FTIR spectroscopy (AR = 0.757, SID = 0.749) could better cluster P. aeruginosa strains than MLST and in silico serotyping (AR = 0.544, SID = 0.470). Though PFGE showed the highest discriminatory power, low concordance was observed between PFGE and the other methods. Above all, this study demonstrates the utility of the IRBT as a quick, low-cost, real-time typing tool for the detection of CRPA strains.
Collapse
Affiliation(s)
- Yanyan Hu
- Clinical Microbiology Laboratory, 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dingping Jin
- Infection Control Department, 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyi Shen
- Clinical Microbiology Laboratory, 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Congcong Liu
- Clinical Microbiology Laboratory, 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongwei Zhou
- Clinical Microbiology Laboratory, 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Zhang
- Clinical Microbiology Laboratory, 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Rong Zhang, ✉
| |
Collapse
|
13
|
Papa-Ezdra R, Cordeiro NF, Outeda M, Garcia-Fulgueiras V, Araújo L, Seija V, Ayala JA, Bado I, Vignoli R. Novel Resistance Regions Carrying Tn aphA6, blaVIM-2, and blaPER-1, Embedded in an IS Pa40-Derived Transposon from Two Multi-Resistant Pseudomonas aeruginosa Clinical Isolates. Antibiotics (Basel) 2023; 12:antibiotics12020304. [PMID: 36830215 PMCID: PMC9952335 DOI: 10.3390/antibiotics12020304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin-tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacEΔ1-sul1-ISCR1, qnrVC6-ISCR1-blaPER-1-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacEΔ1-sul1, ISCR1-blaPER-1-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources.
Collapse
Affiliation(s)
- Romina Papa-Ezdra
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Av. Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Nicolás F. Cordeiro
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Av. Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Matilde Outeda
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av. Italia s/n, Montevideo 11600, Uruguay
| | - Virginia Garcia-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Av. Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Lucía Araújo
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Av. Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Verónica Seija
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av. Italia s/n, Montevideo 11600, Uruguay
| | - Juan A. Ayala
- Centro de Biología Molecular “Severo Ochoa” (CBMSO)-CSIC, C. Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Inés Bado
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Av. Alfredo Navarro 3051, Montevideo 11600, Uruguay
- Correspondence: (I.B.); (R.V.)
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Av. Alfredo Navarro 3051, Montevideo 11600, Uruguay
- Correspondence: (I.B.); (R.V.)
| |
Collapse
|
14
|
Zhao Y, Chen D, Ji B, Zhang X, Anbo M, Jelsbak L. Whole-genome sequencing reveals high-risk clones of Pseudomonas aeruginosa in Guangdong, China. Front Microbiol 2023; 14:1117017. [PMID: 37125174 PMCID: PMC10140354 DOI: 10.3389/fmicb.2023.1117017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The ever-increasing prevalence of infections produced by multidrug-resistant or extensively drug-resistant Pseudomonas aeruginosa is commonly linked to a limited number of aptly-named epidemical 'high-risk clones' that are widespread among and within hospitals worldwide. The emergence of new potential high-risk clone strains in hospitals highlights the need to better and further understand the underlying genetic mechanisms for their emergence and success. P. aeruginosa related high-risk clones have been sporadically found in China, their genome sequences have rarely been described. Therefore, the large-scale sequencing of multidrug-resistance high-risk clone strains will help us to understand the emergence and transmission of antibiotic resistances in P. aeruginosa high-risk clones. In this study, 212 P. aeruginosa strains were isolated from 2 tertiary hospitals within 3 years (2018-2020) in Guangdong Province, China. Whole-genome sequencing, multi-locus sequence typing (MLST) and antimicrobial susceptibility testing were applied to analyze the genomic epidemiology of P. aeruginosa in this region. We found that up to 130 (61.32%) of the isolates were shown to be multidrug resistant, and 196 (92.45%) isolates were Carbapenem-Resistant Pseudomonas aeruginosa. MLST analysis demonstrated high diversity of sequence types, and 18 reported international high-risk clones were identified. Furthermore, we discovered the co-presence of exoU and exoS genes in 5 collected strains. This study enhances insight into the regional research of molecular epidemiology and antimicrobial resistance of P. aeruginosa in China. The high diversity of clone types and regional genome characteristics can serve as a theoretical reference for public health policies and help guide measures for the prevention and control of P. aeruginosa resistance.
Collapse
Affiliation(s)
- Yonggang Zhao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dingqiang Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Lars Jelsbak,
| |
Collapse
|
15
|
Zhang B, Xu X, Song X, Wen Y, Zhu Z, Lv J, Xie X, Chen L, Tang YW, Du H. Emerging and re-emerging KPC-producing hypervirulent Pseudomonas aeruginosa ST697 and ST463 between 2010 and 2021. Emerg Microbes Infect 2022; 11:2735-2745. [DOI: 10.1080/22221751.2022.2140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Biying Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr.55, 14513 Teltow, Germany
| | - Xiaomei Song
- Department of Nursing, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Yi-Wei Tang
- Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), New York, NY, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| |
Collapse
|
16
|
New Variants of Pseudomonas aeruginosa High-Risk Clone ST233 Associated with an Outbreak in a Mexican Paediatric Hospital. Microorganisms 2022; 10:microorganisms10081533. [PMID: 36013951 PMCID: PMC9414371 DOI: 10.3390/microorganisms10081533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Recent multidrug resistance in Pseudomonas aeruginosa has favoured the adaptation and dissemination of worldwide high-risk strains. In June 2018, 15 P. aeruginosa strains isolated from patients and a contaminated multi-dose meropenem vial were characterized to assess their association to an outbreak in a Mexican paediatric hospital. The strains were characterized by antibiotic susceptibility profiling, virulence factors’ production, and biofilm formation. The clonal relationship among isolates was determined with pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) sequencing. Repressor genes for the MexAB-OprM efflux pump were sequenced for haplotype identification. Of the strains, 60% were profiled as extensively drug-resistant (XDR), 33% as multidrug-resistant (MDR), and 6.6% were classified as sensitive (S). All strains presented intermediate resistance to colistin, and 80% were sensitive to aztreonam. Pyoverdine was the most produced virulence factor. The PFGE technique was performed for the identification of the outbreak, revealing eight strains with the same electrophoretic pattern. ST235 and ten new sequence types (STs) were identified, all closely related to ST233. ST3241 predominated in 26.66% of the strains. Twenty-five synonymous and seventeen nonsynonymous substitutions were identified in the regulatory genes of the MexAB-OprM efflux pump, and nalC was the most variable gene. Six different haplotypes were identified. Strains from the outbreak were metallo-β-lactamases and phylogenetically related to the high-risk clone ST233.
Collapse
|
17
|
Peng W, Li H, Zhao X, Shao B, Zhu K. Pyocyanin Modulates Gastrointestinal Transformation and Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2722-2732. [PMID: 35171599 DOI: 10.1021/acs.jafc.1c07726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phenazines are ubiquitously produced by Pseudomonas spp. in the environment and are widely used in agriculture and clinical therapies, making their accumulation through the food chain cause potential risks to human health. Here, we utilized pyocyanin (PYO) as a representative to study the effects of phenazines on digestive tracts. Pharmacokinetic analysis showed that PYO exhibited low systemic exposure, slow elimination, and low accumulation in both rat and pig models. PYO was subsequently found to induce intestinal microbiota dysbiosis, destroy the mucus layer and physical barrier, and even promote gut vascular barrier (GVB) impairment, consequently increasing the gut permeability. Additionally, integral and metabolomic analyses of the liver demonstrated that PYO induced liver inflammation and metabolic disorders. The metabolic analysis further confirmed that all of the metabolites of PYO retain the nitrogen-containing tricyclic structural skeleton of phenazines, which was the core bioactivity of phenazine compounds. These findings elucidated that PYO could be metabolized by animals. Meanwhile, high levels of PYO could induce intestinal barrier impairment and liver damage, suggesting that we should be alert to the accumulation of phenazines.
Collapse
Affiliation(s)
- Wenjing Peng
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xiaole Zhao
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bing Shao
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Halogenated Dihydropyrrol-2-One Molecules Inhibit Pyocyanin Biosynthesis by Blocking the Pseudomonas Quinolone Signaling System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041169. [PMID: 35208954 PMCID: PMC8875348 DOI: 10.3390/molecules27041169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.
Collapse
|
19
|
Emergence of a KPC-90 Variant that Confers Resistance to Ceftazidime-Avibactam in an ST463 Carbapenem-Resistant Pseudomonas aeruginosa Strain. Microbiol Spectr 2022; 10:e0186921. [PMID: 35019766 PMCID: PMC8754116 DOI: 10.1128/spectrum.01869-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) has become a serious challenge in the clinic. Recently, the prevalence of CRPA isolates carrying the blaKPC-2 gene has been increasing in China. Ceftazidime-avibactam (CZA) has shown good efficacy against large portions of KPC-2-producing CRPA strains. However, with the increasing usage of this drug, CZA resistance in CRPA strains has been reported. Here, we reported for the first time that resistance of the ST463 CRPA strain to CZA was caused by a novel variant in the KPC gene that arose after CZA exposure. The CRPA strain PA2207 is a carbapenem- and CZA-resistant strain that harbors a mutated blaKPC gene, named blaKPC-90. Cloning and expression of blaKPC-90 in Escherichia coli DH5α revealed that KPC-90 led to a 64-fold increase in the MIC value of CZA. Conjugation experiments further confirmed that blaKPC-90 was located on a conjugative plasmid. Whole-genome sequencing analysis showed that this plasmid had high sequence similarity to a previously reported novel blaKPC-2-harboring plasmid in a clinical P. aeruginosa strain isolated in China. In addition, overexpression of an efflux pump (MexXY-OprM) might be associated with the CZA resistance phenotype, as determined by reverse transcription-quantitative PCR and efflux pump inhibition experiments. For the first time, we reported a KPC variant, KPC-90, in a clinical ST463 CRPA strain with CZA resistance that was mediated by a 2 amino acid insertion outside the KPC omega-loop region. Our study further highlights that diverse KPC variants that mediate CZA resistance have emerged in the CRPA strain. Furthermore, KPC-90 mutation combined with efflux pump overexpression resulted in a high level of resistance to CZA in the PA2207 isolate. Effective surveillance should be conducted to prevent CZA resistance from spreading in the CRPA strain. IMPORTANCE For the first time, we reported a KPC variant, KPC-90, in a clinical ST463 CRPA strain with CZA resistance. CZA resistance was mediated by a 2 amino acid insertion outside the KPC omega-loop region in CRPA. Our study further emphasized that CZA resistance caused by blaKPC gene mutation could be selected in CRPA after CZA therapy. Considering the widespread presence of the ST463 CRPA strain in China, clinicians should pay attention to the risk of the development of CZA resistance in CRPA strains under treatment pressure.
Collapse
|
20
|
Prevalence, Risk Factors, and Molecular Epidemiology of Intestinal Carbapenem-Resistant Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0134421. [PMID: 34817230 PMCID: PMC8612150 DOI: 10.1128/spectrum.01344-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa may become multidrug-resistant (MDR) due to multiple inherited and acquired resistance mechanisms. The human gastrointestinal tract is known as a reservoir of P. aeruginosa and its resistance genes. In this study, we collected 76 intestinal carbapenem-resistant P. aeruginosa (CRPA) strains from clinical inpatients admitted to our hospital from 2014 to 2019, together with their medical data. We aim to analyze the clinical risk factors associated with CRPA infection and its molecular features. We found that the prevalence of CRPA in P. aeruginosa strains was 41.3% (95% confidence interval [CI], 34.1 to 48.8%). We also identified four variables associated with intestinal CRPA positivity, prior antibiotic exposure to aminoglycosides or carbapenems, underlying diabetes mellitus, and extraintestinal P. aeruginosa isolation. blaKPC-2 is the only detected carbapenemase gene, accounting for 21.1% of CRPA strains. The genetic environment showed that the blaKPC-2 gene was flanked immediately by ISKpn8 and ISKpn6 and several other mobile elements further upstream or downstream. Four sequence types (STs) were identified, with ST463 as the dominant sequence type. In conclusion, screening for P. aeruginosa colonization upon hospital admission could reduce the risk of P. aeruginosa infection and spread of CRPA in the hospital. IMPORTANCEPseudomonas aeruginosa may become multidrug-resistant (MDR) due to multiple inherited and acquired resistance mechanisms. The human gastrointestinal tract is known as a reservoir of P. aeruginosa and its resistance genes. Risk factor analysis and molecular epidemiology are critical for preventing their potential dissemination. Here, we identified four risk factors associated with intestinal CRPA—prior antibiotic exposure to aminoglycosides or carbapenems, underlying diabetes mellitus, and extraintestinal P. aeruginosa isolation. Further, we found similar genetic environments with several mobile elements surrounding the blaKPC gene, a carbapenemase gene only detected in intestinal CRPA strains in this study. These findings are of significant public health importance, as the information will facilitate the control of the emergence and spread of CRPA.
Collapse
|