Gao Y, Zhang J, Pan J, Ying S, Lou B, Yang Q, Hong W, Yang G. F
OF1-ATP synthase molecular motor biosensor for miRNA detection of colon cancer.
Life Sci 2023;
319:121527. [PMID:
36841472 DOI:
10.1016/j.lfs.2023.121527]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
AIMS
To establish a FOF1-ATP synthase molecular motor biosensor to accurately identify colon cancer miRNAs.
MAIN METHODS
The FOF1-ATP synthase molecular motor is extracted by fragmentation-centrifugation and connected to the colon cancer-specific miR-17 capture probe in the manner of the ε subunit-biotin-streptavidin-biotin system. Signal probes are designed for dual-signal characterization to increase detection accuracy. The FOF1-ATPase rotation rate decreases when the signaling and capture probes are combined with the target miRNA, resulting in a decrease in ATP synthesis. miR-17 concentrations are determined by changes in ATP-mediated chemiluminescence intensity and signal probe-mediated OD450nm.
KEY FINDINGS
The chemiluminescence intensity and OD450nm show a good linear relationship with the miR-17 concentration in the range of 5 to 200 nmol L-1 (R2 = 0.9985, 0.9989). The colon cancer mouse model is established for the blood samples, and miR-17 in serum and RNA extracts is quantitatively determined using the constructed sensor.
SIGNIFICANCE
The results are consistent with colon cancer progression, and the low concentration of miR-17 detecting accuracy is comparable to the PCR assay. In conclusion, the developed method is a direct, rapid, and promising method for miRNA detection of colon cancer.
Collapse