1
|
Huang Q, Xiao Y, Sun P. Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:70-75. [PMID: 39628643 PMCID: PMC11612815 DOI: 10.1016/j.aninu.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 12/06/2024]
Abstract
Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Xiao
- Hebei Yancheng Food Co., Ltd., Baoding 072650, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Lang H, Liu Y, Duan H, Zhang W, Hu X, Zheng H. Identification of peptides from honeybee gut symbionts as potential antimicrobial agents against Melissococcus plutonius. Nat Commun 2023; 14:7650. [PMID: 38001079 PMCID: PMC10673953 DOI: 10.1038/s41467-023-43352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Eusocial pollinators are crucial elements in global agriculture. The honeybees and bumblebees are associated with a simple yet host-restricted gut community, which protect the hosts against pathogen infections. Recent genome mining has led to the discovery of biosynthesis pathways of bioactive natural products mediating microbe-microbe interactions from the gut microbiota. Here, we investigate the diversity of biosynthetic gene clusters in the bee gut microbiota by analyzing 477 genomes from cultivated bacteria and metagenome-assembled genomes. We identify 744 biosynthetic gene clusters (BGCs) covering multiple chemical classes. While gene clusters for the post-translationally modified peptides are widely distributed in the bee guts, the distribution of the BGC classes varies significantly in different bee species among geographic locations, which is attributed to the strain-level variation of bee gut members in the chemical repertoire. Interestingly, we find that Gilliamella strains possessing a thiopeptide-like BGC show potent activity against the pathogenic Melissococcus plutonius. The spectrometry-guided genome mining reveals a RiPP-encoding BGC from Gilliamella with a 10 amino acid-long core peptide exhibiting antibacterial potentials. This study illustrates the widespread small-molecule-encoding BGCs in the bee gut symbionts and provides insights into the bacteria-derived natural products as potential antimicrobial agents against pathogenic infections.
Collapse
Affiliation(s)
- Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Yuwen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Huijuan Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wenhao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
3
|
Béchade B, Cabuslay CS, Hu Y, Mendonca CM, Hassanpour B, Lin JY, Su Y, Fiers VJ, Anandarajan D, Lu R, Olson CJ, Duplais C, Rosen GL, Moreau CS, Aristilde L, Wertz JT, Russell JA. Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. THE ISME JOURNAL 2023; 17:1751-1764. [PMID: 37558860 PMCID: PMC10504363 DOI: 10.1038/s41396-023-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont-Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)-and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Christian S Cabuslay
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Caroll M Mendonca
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Bahareh Hassanpour
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Y Lin
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Yangzhou Su
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Valerie J Fiers
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Dharman Anandarajan
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Richard Lu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Chandler J Olson
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Christophe Duplais
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - John T Wertz
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Theys C, Verheyen J, Delnat V, Janssens L, Tüzün N, Stoks R. Thermal and latitudinal patterns in pace-of-life traits are partly mediated by the gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158829. [PMID: 36116637 DOI: 10.1016/j.scitotenv.2022.158829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The integration of life-history, physiological and behavioural traits into the pace-of-life generates a powerful framework to understand trait variation in nature both along environmental gradients and in response to environmental stressors. While the gut microbiome has been hypothesized as a candidate mechanism to underlie differentiation in the pace-of-life, this has been rarely studied. We investigated the role of the gut microbiome in contributing to the differentiation in pace-of-life and in thermal adaptation between populations of Ischnura elegans damselfly larvae inhabiting warmer low latitudes and colder high latitudes. We carried out a common-garden experiment, whereby we manipulated the exposure of the damselfly larvae to two key global warming factors: 4 °C warming and a 30 °C heat wave. Comparing the bacterial composition of the food source and the bacterioplankton indicated that damselfly larvae differentially take up bacteria from the surrounding environment and have a resident and functionally relevant microbiome. The gut microbiome differed between larvae of both latitudes, and this was associated with the host's latitudinal differentiation in activity, a key pace-of-life trait. Under heat wave exposure, the gut microbial community composition of high-latitude larvae converged towards that of the low-latitude larvae, with an increase in bacteria that likely are important in providing energy to cope with the heat wave. This suggests an adaptive latitude-specific shift in the gut microbiota matching the better ability of low-latitude hosts to deal with heat extremes. In general, our study provides evidence for the gut microbiome contributing to latitudinal differentiation in both the pace-of-life and in heat adaptation in natural populations.
Collapse
Affiliation(s)
- Charlotte Theys
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
5
|
Graber LC, Ramalho MO, Powell S, Moreau CS. Identifying the Role of Elevation, Geography, and Species Identity in Structuring Turtle Ant (Cephalotes Latreille, 1802) Bacterial Communities. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02128-z. [PMID: 36352137 DOI: 10.1007/s00248-022-02128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bacterial communities in animals are often necessary for hosts to survive, particularly for hosts with nutrient-limited diets. The composition, abundance, and richness of these bacterial communities may be shaped by host identity and external ecological factors. The turtle ants (genus Cephalotes) are predominantly herbivorous and known to rely on bacterial communities to enrich their diet. Cephalotes have a broad Neotropical distribution, with high diversity in the South American Cerrado, a geologically and biologically diverse savanna. Using 16S rRNA amplicon sequencing, we examined the bacterial communities of forty-one Cephalotes samples of sixteen different species collected from multiple locations across two sites in the Cerrado (MG, Brazil) and compared the bacterial communities according to elevation, locality, species, and species group, defined by host phylogeny. Beta diversity of bacterial communities differed with respect to all categories but particularly strongly when compared by geographic location, species, and species group. Differences seen in species and species groups can be partially explained by the high abundance of Mesorhizobium in Cephalotes pusillus and Cephalotes depressus species groups, when compared to other clades via the Analysis of Composition of Microbiome (ANCOM). Though the Cephalotes bacterial community is highly conserved, results from this study indicate that multiple external factors can affect and change bacterial community composition and abundance.
Collapse
Affiliation(s)
- Leland C Graber
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY, 14853, USA.
| | - Manuela O Ramalho
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY, 14853, USA
- Department of Biology, West Chester University, West Chester, PA, USA
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, D.C., USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY, 14853, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|