1
|
Wang T, Li A, Zhao H, Wu Q, Guo J, Tian H, Wang J, Que Y, Xu L. A novel system with robust compatibility and stability for detecting Sugarcane yellow leaf virus based on CRISPR-Cas12a. Microbiol Spectr 2024; 12:e0114924. [PMID: 39120142 PMCID: PMC11370245 DOI: 10.1128/spectrum.01149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024] Open
Abstract
Sugarcane yellow leaf virus (SCYLV) can reduce sugarcane productivity. A novel detection system based on reverse transcription-multienzyme isothermal rapid amplification (RT-MIRA) combined with CRISPR-Cas12a, named RT-MIRA-CRISPR-Cas12a, was developed. This innovative approach employs crude leaf extract directly as the reaction template, streamlining the extraction process for simplicity and speed. Combining RT-MIRA and CRISPR-Cas12a in one reaction tube increases the ease of operation while reducing the risk of aerosol contamination. In addition, it exhibits sensitivity equivalent to qPCR, boasting a lower detection limit of 25 copies. Remarkably, the entire process, from sample extraction to reaction completion, requires only 52-57 minutes, just a thermostat water bath. The result can be observed and judged by the naked eye.IMPORTANCESugarcane yellow leaf disease (SCYLD) is an important viral disease that affects sugarcane yield. There is an urgent need for rapid, sensitive, and stable detection methods. The reverse transcription-multienzyme isothermal rapid amplification combined with CRISPR-Cas12a (RT-MIRA-CRISPR-Cas12a) method established in this study has good specificity and high sensitivity. In addition, the system showed good compatibility and stability with the crude leaf extract, as shown by the fact that the crude extract of the positive sample could still be stably detected after 1 week when placed at 4°C. RT-MIRA-CRISPR-Cas12a, reverse transcription polymerase chain reaction (RT-PCR), and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect SCYLV on 33 sugarcane leaf samples collected from the field, and it was found that the three methods reached consistent conclusions. This Cas12a-based detection method proves highly suitable for the rapid on-site detection of the SCYLV.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anzhen Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Helei Tian
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingwen Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Jaybhaye SG, Chavhan RL, Hinge VR, Deshmukh AS, Kadam US. CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology 2024; 597:110160. [PMID: 38955083 DOI: 10.1016/j.virol.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant viruses threaten global food security by infecting commercial crops, highlighting the critical need for efficient virus detection to enable timely preventive measures. Current techniques rely on polymerase chain reaction (PCR) for viral genome amplification and require laboratory conditions. This review explores the applications of CRISPR-Cas assisted diagnostic tools, specifically CRISPR-Cas12a and CRISPR-Cas13a/d systems for plant virus detection and analysis. The CRISPR-Cas12a system can detect viral DNA/RNA amplicons and can be coupled with PCR or isothermal amplification, allowing multiplexed detection in plants with mixed infections. Recent studies have eliminated the need for expensive RNA purification, streamlining the process by providing a visible readout through lateral flow strips. The CRISPR-Cas13a/d system can directly detect viral RNA with minimal preamplification, offering a proportional readout to the viral load. These approaches enable rapid viral diagnostics within 30 min of leaf harvest, making them valuable for onsite field applications. Timely identification of diseases associated with pathogens is crucial for effective treatment; yet developing rapid, specific, sensitive, and cost-effective diagnostic technologies remains challenging. The current gold standard, PCR technology, has drawbacks such as lengthy operational cycles, high costs, and demanding requirements. Here we update the technical advancements of CRISPR-Cas in viral detection, providing insights into future developments, versatile applications, and potential clinical translation. There is a need for approaches enabling field plant viral nucleic acid detection with high sensitivity, specificity, affordability, and portability. Despite challenges, CRISPR-Cas-mediated pathogen diagnostic solutions hold robust capabilities, paving the way for ideal diagnostic tools. Alternative applications in virus research are also explored, acknowledging the technology's limitations and challenges.
Collapse
Affiliation(s)
- Siddhant G Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Rahul L Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Vidya R Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Abhijit S Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Ulhas S Kadam
- Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Gyeongsangnam-do, South Korea.
| |
Collapse
|
3
|
Anbazhagan P, Parameswari B, Anitha K, Chaitra GV, Bajaru B, Rajashree A, Mangrauthia SK, Yousuf F, Chalam VC, Singh GP. Advances in plant pathogen detection: integrating recombinase polymerase amplification with CRISPR/Cas systems. 3 Biotech 2024; 14:214. [PMID: 39211481 PMCID: PMC11349965 DOI: 10.1007/s13205-024-04055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Plant pathogens are causing substantial economic losses and thus became a significant threat to global agriculture. Effective and timely detection methods are prerequisite for combating the damages caused by the plant pathogens. In the realm of plant pathogen detection, the isothermal amplification techniques, e.g., recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), have emerged as a fast, precise, and most sensitive alternative to conventional PCR but they often comprise high rates of non-specific amplification and operational complexity. In recent advancements, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease Cas systems, particularly Cas12, have emerged as powerful tools for highly sensitive, specific, and rapid pathogen detection. Exploiting the collateral activities of Cas12, which selectively cleaves single-stranded DNA (ssDNA), novel detection platforms have been developed. The mechanism employs the formation of a triple complex molecule comprising guide RNA, Cas12 enzyme, and the substrate target nucleotide sequence. Upon recognition of the target, Cas12 indiscriminately cleaves the DNA strand, leading to the release of fluorescence from the cleaved ssDNA reporter. Integration of isothermal amplification methods with CRISPR/Cas12 enables one-step detection assays, facilitating rapid pathogen identification within 30 min at a single temperature. This integrated RPA-CRISPR/Cas12a approach eliminates the need for RNA extraction and cDNA conversion, allowing direct use of crude plant sap as a template. With an affordable fluorescence visualization system, this portable method achieves 100-fold greater sensitivity than conventional techniques. This review summarizes recent advances in RPA-CRISPR/Cas12a for detecting plant pathogens, covering primer design, field-level portability, and enhanced sensitivity.
Collapse
Affiliation(s)
- P. Anbazhagan
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - B. Parameswari
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - K. Anitha
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - G. V. Chaitra
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - Bhaskar Bajaru
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - A. Rajashree
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - S. K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Faisal Yousuf
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - V. Celia Chalam
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| | - G. P. Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| |
Collapse
|
4
|
Kanapiya A, Amanbayeva U, Tulegenova Z, Abash A, Zhangazin S, Dyussembayev K, Mukiyanova G. Recent advances and challenges in plant viral diagnostics. FRONTIERS IN PLANT SCIENCE 2024; 15:1451790. [PMID: 39193213 PMCID: PMC11347306 DOI: 10.3389/fpls.2024.1451790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Accurate and timely diagnosis of plant viral infections plays a key role in effective disease control and maintaining agricultural productivity. Recent advances in the diagnosis of plant viruses have significantly expanded our ability to detect and monitor viral pathogens in agricultural crops. This review discusses the latest advances in diagnostic technologies, including both traditional methods and the latest innovations. Conventional methods such as enzyme-linked immunosorbent assay and DNA amplification-based assays remain widely used due to their reliability and accuracy. However, diagnostics such as next-generation sequencing and CRISPR-based detection offer faster, more sensitive and specific virus detection. The review highlights the main advantages and limitations of detection systems used in plant viral diagnostics including conventional methods, biosensor technologies and advanced sequence-based techniques. In addition, it also discusses the effectiveness of commercially available diagnostic tools and challenges facing modern diagnostic techniques as well as future directions for improving informed disease management strategies. Understanding the main features of available diagnostic methodologies would enable stakeholders to choose optimal management strategies against viral threats and ensure global food security.
Collapse
Affiliation(s)
- Aizada Kanapiya
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ulbike Amanbayeva
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanar Tulegenova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Altyngul Abash
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Kazbek Dyussembayev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
- Scientific Center "Agrotechnopark", Shakarim University, Semey, Kazakhstan
| |
Collapse
|
5
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
6
|
Tanny T, Sallam M, Soda N, Nguyen NT, Alam M, Shiddiky MJA. CRISPR/Cas-Based Diagnostics in Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11765-11788. [PMID: 37506507 DOI: 10.1021/acs.jafc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pests and disease-causing pathogens frequently impede agricultural production. An early and efficient diagnostic tool is crucial for effective disease management. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein (Cas) have recently been harnessed to develop diagnostic tools. The CRISPR/Cas system, composed of the Cas endonuclease and guide RNA, enables precise identification and cleavage of the target nucleic acids. The inherent sensitivity, high specificity, and rapid assay time of the CRISPR/Cas system make it an effective alternative for diagnosing plant pathogens and identifying genetically modified crops. Furthermore, its potential for multiplexing and suitability for point-of-care testing at the field level provide advantages over traditional diagnostic systems such as RT-PCR, LAMP, and NGS. In this review, we discuss the recent developments in CRISPR/Cas based diagnostics and their implications in various agricultural applications. We have also emphasized the major challenges with possible solutions and provided insights into future perspectives and potential applications of the CRISPR/Cas system in agriculture.
Collapse
Affiliation(s)
- Tanzena Tanny
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Mayers Road, Nambour, QLD 4560, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
7
|
Shao H, Jian J, Peng D, Yao K, Abdulsalam S, Huang W, Kong L, Li C, Peng H. Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a Technology for Rapid and Highly Sensitive Detection of Heterodera avenae and Heterodera filipjevi. PLANT DISEASE 2023:PDIS02220386RE. [PMID: 36167511 DOI: 10.1094/pdis-02-22-0386-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cereal cyst nematodes Heterodera avenae and Heterodera filipjevi are recognized as cyst nematodes that infect cereal crops and cause severe economic losses worldwide. Rapid, visual detection of cyst nematodes is essential for more effective control of this pest. In this study, recombinase polymerase amplification (RPA) combined with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (formerly known as cpf1) was developed for the rapid detection of H. avenae and H. filipjevi from infested field samples. The RPA reaction was performed at a wide range of temperatures from 35 to 42°C within 15 min. There was no cross-reactivity between H. avenae, H. filipjevi, and the common closely related plant-parasitic nematodes, indicating the high specificity of this assay. The detection limit of RPA-Cas12a was as low as 10-4 single second-stage juvenile (J2), 10-5 single cyst, and 0.001 ng of genomic DNA, which is 10 times greater than that of RPA-lateral flow dipstick (LFD) detection. The RPA-Cas12a assay was able to detect 10-1 single J2 of H. avenae and H. filipjevi in 10 g of soil. In addition, the RPA-LFD assay and RPA-Cas12a assays could both quickly detect H. avenae and H. filipjevi from naturally infested soil, and the entire detection process could be completed within 1 h. These results indicated that the RPA-Cas12a assay developed herein is a simple, rapid, specific, sensitive, and visual method that can be easily adapted for the quick detection of H. avenae and H. filipjevi in infested fields.
Collapse
Affiliation(s)
- Hudie Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Jinzhuo Jian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Ke Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Sulaiman Abdulsalam
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
- Division of Agricultural Colleges/Department of Crop Protection, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Chuanren Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
8
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
9
|
Wang J, Hu X, Wang Y, Zeng H, Liu X, Liu H. Rapid detection of genetically modified products based on CRISPR-Cas12a combined with recombinase polymerase amplification. Curr Res Food Sci 2022; 5:2281-2286. [DOI: 10.1016/j.crfs.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
|
10
|
Advancements and prospectives of sugar beet (Beta vulgaris L.) biotechnology. Appl Microbiol Biotechnol 2022; 106:7417-7430. [PMID: 36241928 DOI: 10.1007/s00253-022-12226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Sugar beet (Beta vulgaris L.) is the second largest sugar-producing crop (following sugarcane), accounting around 40% of total global sugar output. It has been reckoned with huge contribution in sugar, ethanol, and fodder industries. Since sugar beet is recalcitrant in nature, to address the multifaceted difficulties associated with its conventional propagation, several biotechnological tools and techniques aiming with in vitro-based mass regeneration-cum-genetic enhancement are becoming popular. The implementation of effective methodology for in vitro regeneration from ex vitro explant sources becomes the necessity for successful commercial-scale clonal propagation and genetic modification. Substantial research achievements have been made in the past few decades in connection to the optimization of in vitro protocols for direct and callus-mediated regeneration, homozygous line production, somatic hybridization, and genetic transformation of sugar beet. The current review summarizes several reported findings on various physio-chemical factors responsible for direct, indirect organogenesis, somatic embryogenesis, protoplast culture, haploid culture, acclimatization accountable for plantlet mass multiplication, assessing the genetic integrity of in vitro-cultured plantlets, and, finally, successful transgenic approaches to remediate biotic and abiotic stresses. Furthermore, this study highlights undiscovered regions, research gaps, and major bottlenecks that might be considered in developing significant innovative ideas related to sugar beet biotechnology in the near future. KEY POINTS: • Sugar beet, the second largest sugar producer, is a major contributor in sugar, ethanol, and fodder industries. • Current review comprehensively evaluates diverse factors influencing the success of in vitro biotechnological interventions. • This review further highlights the research gaps and offers way outs to attain comprehensive genetic improvement.
Collapse
|
11
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
12
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
13
|
Bhat AI, Aman R, Mahfouz M. Onsite detection of plant viruses using isothermal amplification assays. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1859-1873. [PMID: 35689490 PMCID: PMC9491455 DOI: 10.1111/pbi.13871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 05/09/2023]
Abstract
Plant diseases caused by viruses limit crop production and quality, resulting in significant losses. However, options for managing viruses are limited; for example, as systemic obligate parasites, they cannot be killed by chemicals. Sensitive, robust, affordable diagnostic assays are needed to detect the presence of viruses in plant materials such as seeds, vegetative parts, insect vectors, or alternative hosts and then prevent or limit their introduction into the field by destroying infected plant materials or controlling insect hosts. Diagnostics based on biological and physical properties are not very sensitive and are time-consuming, but assays based on viral proteins and nucleic acids are more specific, sensitive, and rapid. However, most such assays require laboratories with sophisticated equipment and technical skills. By contrast, isothermal-based assays such as loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) are simple, easy to perform, reliable, specific, and rapid and do not require specialized equipment or skills. Isothermal amplification assays can be performed using lateral flow devices, making them suitable for onsite detection or testing in the field. To overcome non-specific amplification and cross-contamination issues, isothermal amplification assays can be coupled with CRISPR/Cas technology. Indeed, the collateral activity associated with some CRISPR/Cas systems has been successfully harnessed for visual detection of plant viruses. Here, we briefly describe traditional methods for detecting viruses and then examine the various isothermal assays that are being harnessed to detect viruses.
Collapse
Affiliation(s)
- Alangar I. Bhat
- ICAR‐Indian Institute of Spices ResearchKozhikodeKeralaIndia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
14
|
Pan W, Li W, Liu L, Zhang H. Antiviral strategies: What can we learn from natural reservoirs? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1849-1855. [PMID: 36103243 DOI: 10.1111/jipb.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Viruses cause many severe diseases in both plants and animals, urging us to explore new antiviral strategies. In their natural reservoirs, viruses live and replicate while causing mild or no symptoms. Some animals, such as bats, are the predicted natural reservoir of multiple viruses, indicating that they possess broad-spectrum antiviral capabilities. Mechanisms of host defenses against viruses are generally studied independently in plants and animals. In this article, we speculate that some antiviral strategies of natural reservoirs are conserved between kingdoms. To verify this hypothesis, we created null mutants of 10-formyltetrahydrofolate synthetase (AtTHFS), an Arabidopsis thaliana homologue of methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1), which encodes a positive regulator of viral replication in bats. We found that disruption of AtTHFS enhanced plant resistance to three different types of plant viruses, including the tomato spotted wilt virus (TSWV), the cucumber mosaic virus (CMV) and the beet severe curly top virus (BSCTV). These results demonstrate a novel antiviral strategy for plant breeding. We further discuss the approaches used to identify and study natural reservoirs of plant viruses, especially those hosting many viruses, and highlight the possibility of discovering new antiviral strategies from them for plant molecular breeding and antiviral therapy.
Collapse
Affiliation(s)
- Wenbo Pan
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Weiwei Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| |
Collapse
|
15
|
Marqués MC, Sánchez-Vicente J, Ruiz R, Montagud-Martínez R, Márquez-Costa R, Gómez G, Carbonell A, Daròs JA, Rodrigo G. Diagnostics of Infections Produced by the Plant Viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13. ACS Synth Biol 2022; 11:2384-2393. [PMID: 35793201 PMCID: PMC9295153 DOI: 10.1021/acssynbio.2c00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viral infections in plants threaten food security. Thus, simple and effective methods for virus detection are required to adopt early measures that can prevent virus spread. However, current methods based on the amplification of the viral genome by polymerase chain reaction (PCR) require laboratory conditions. Here, we exploited the CRISPR-Cas12a and CRISPR-Cas13a/d systems to detect three RNA viruses, namely, Tobacco mosaic virus, Tobacco etch virus, and Potato virus X, in Nicotiana benthamiana plants. We applied the CRISPR-Cas12a system to detect viral DNA amplicons generated by PCR or isothermal amplification, and we also performed a multiplexed detection in plants with mixed infections. In addition, we adapted the detection system to bypass the costly RNA purification step and to get a visible readout with lateral flow strips. Finally, we applied the CRISPR-Cas13a/d system to directly detect viral RNA, thereby avoiding the necessity of a preamplification step and obtaining a readout that scales with the viral load. These approaches allow for the performance of viral diagnostics within half an hour of leaf harvest and are hence potentially relevant for field-deployable applications.
Collapse
Affiliation(s)
- María-Carmen Marqués
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Javier Sánchez-Vicente
- Instituto
de Biología Molecular y Celular de Plantas, CSIC—Universitat Politècnica de València, València 46022, Spain
| | - Raúl Ruiz
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Roser Montagud-Martínez
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Rosa Márquez-Costa
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Gustavo Gómez
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Alberto Carbonell
- Instituto
de Biología Molecular y Celular de Plantas, CSIC—Universitat Politècnica de València, València 46022, Spain
| | - José-Antonio Daròs
- Instituto
de Biología Molecular y Celular de Plantas, CSIC—Universitat Politècnica de València, València 46022, Spain
| | - Guillermo Rodrigo
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| |
Collapse
|
16
|
Singh M, Bindal G, Misra CS, Rath D. The era of Cas12 and Cas13 CRISPR-based disease diagnosis. Crit Rev Microbiol 2022; 48:714-729. [PMID: 35164636 DOI: 10.1080/1040841x.2021.2025041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) systems, since their discovery, have found growing applications in cell imaging, transcription modulation, therapeutics and diagnostics. Discovery of Cas12 and Cas13 have brought a new dimension to the field of disease diagnosis. These endonucleases have been extensively used for diagnosis of viral diseases in humans and animals and to a lesser extent in plants. The exigency of SARS-CoV-2 pandemic has highlighted the potential of CRISPR-Cas systems and sparked the development of innovative point-of-care diagnostic technologies. Rapid adaptation of CRISPR-chemistry combined with sensitive read-outs for emerging pathogens make them ideal candidates for detection and management of diseases in future. CRISPR-based approaches have been recruited for the challenging task of cancer detection and prognosis. It stands to reason that the field of CRISPR-Cas-based diagnosis is likely to expand with Cas12 and Cas13 playing a pivotal role. Here we focus exclusively on Cas12- and Cas13-based molecular diagnosis in humans, animals and plants including the detection of SARS-coronavirus. The CRISPR-based diagnosis of plant and animal diseases have not found adequate mention in previous reviews. We discuss various advancements, the potential shortfalls and challenges in the widespread adaptation of this technology for disease diagnosis.
Collapse
Affiliation(s)
- Mandeep Singh
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Gargi Bindal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | | | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
17
|
Sharma SK, Gupta OP, Pathaw N, Sharma D, Maibam A, Sharma P, Sanasam J, Karkute SG, Kumar S, Bhattacharjee B. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security. Front Nutr 2022; 8:751512. [PMID: 34977113 PMCID: PMC8716883 DOI: 10.3389/fnut.2021.751512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
Plant viruses pose a serious threat to agricultural production systems worldwide. The world's population is expected to reach the 10-billion mark by 2057. Under the scenario of declining cultivable land and challenges posed by rapidly emerging and re-emerging plant pathogens, conventional strategies could not accomplish the target of keeping pace with increasing global food demand. Gene-editing techniques have recently come up as promising options to enable precise changes in genomes with greater efficiency to achieve the target of higher crop productivity. Of genome engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) proteins have gained much popularity, owing to their simplicity, reproducibility, and applicability in a wide range of species. Also, the application of different Cas proteins, such as Cas12a, Cas13a, and Cas9 nucleases, has enabled the development of more robust strategies for the engineering of antiviral mechanisms in many plant species. Recent studies have revealed the use of various CRISPR-Cas systems to either directly target a viral gene or modify a host genome to develop viral resistance in plants. This review provides a comprehensive record of the use of the CRISPR-Cas system in the development of antiviral resistance in plants and discusses its applications in the overall enhancement of productivity and nutritional landscape of cultivated plant species. Furthermore, the utility of this technique for the detection of various plant viruses could enable affordable and precise in-field or on-site detection. The futuristic potential of CRISPR-Cas technologies and possible challenges with their use and application are highlighted. Finally, the future of CRISPR-Cas in sustainable management of viral diseases, and its practical utility and regulatory guidelines in different parts of the globe are discussed systematically.
Collapse
Affiliation(s)
| | - Om Prakash Gupta
- Division of Quality & Basic Science, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India
| | - Albert Maibam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Parul Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Jyotsana Sanasam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Suhas Gorakh Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sandeep Kumar
- Department of Plant Pathology, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | | |
Collapse
|
18
|
Shin K, Kwon SH, Lee SC, Moon YE. Sensitive and Rapid Detection of Citrus Scab Using an RPA-CRISPR/Cas12a System Combined with a Lateral Flow Assay. PLANTS 2021; 10:plants10102132. [PMID: 34685941 PMCID: PMC8539466 DOI: 10.3390/plants10102132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022]
Abstract
Citrus is the most extensively produced fruit tree crop in the world and is grown in over 130 countries. Fungal diseases in citrus can cause significant losses in yield and quality. An accurate diagnosis is critical for determining the best management practices and preventing future losses. In this study, a Recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/associated (Cas) system was established with the integration of a lateral flow assay (LFA) readout system for diagnosis of citrus scab. This detection can be completed within 1 h, is highly sensitive and prevents cross-reactions with other common fungal citrus diseases. Furthermore, the detection system is compatible with crude DNA extracted from infected plant tissue. This RPA-CRISPR/Cas12a-LFA system provides a sensitive, rapid, and cost-effective method with promising and significant practical value for point-of-care diagnosis of citrus scab. To our knowledge, this is the first report to establish an RPA- and CRISPR-based method with LFA for fungal diseases in plants.
Collapse
|