1
|
Jiao N, Feng W, Ma C, Li H, Zhang J, Zheng J, Guo P. Effects of Dietary Protein Levels on Digestion, Metabolism, Serum Biochemical Indexes, and Rumen Microflora of Lanzhou Fat-Tailed Sheep. Animals (Basel) 2024; 15:25. [PMID: 39794968 PMCID: PMC11718888 DOI: 10.3390/ani15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
This study aimed to investigate the effect of varying levels of dietary protein on digestion, metabolism, serum biochemical indexes, and rumen microflora in Lanzhou fat-tailed sheep. A total of twenty 8-month-old healthy rams with an initial average body weight (BW 25.16 ± 1.09 kg) were selected and randomly divided into four dietary treatments with different protein levels P: 9.47%, MP: 10.53%, HP: 11.56%, and EHP: 12.61%. The rams underwent a 23 day adaptation period, and the experiment was conducted for 7 d. The results showed that with increased dietary protein levels, the apparent digestibility of dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and urine energy significantly increased (p < 0.05), increasing by 8.65%, 7.31%, 6.22%, and 0.1%, respectively. In contrast, the digestibility of neutral detergent fiber (NDF) first increased and then plateaued with the increase in protein levels, and the digestibility of NDF in the HP group was the highest (p < 0.05). The Shannon, Simpson, Chao1, and Ace indices of rumen microorganisms in the four groups did not change significantly (p > 0.05). Additionally, at the phylum level, the relative abundance of Bacteroidota, Firmicutes, and Verrucomicrobiota collectively accounted for over 91% of the total phylum composition. At the genus level, there was an increase in the relative abundance of uncultured_rumen_bacterium and Rikenellaceae_RC9_gut_group in the LP group, whereas the relative abundance of Prevotella decreased. In comparison to the other three groups, the HP group exhibited an increase in the relative abundance of Firmicutes. In summary, dietary protein level had no significant effects on the rumen microflora structure and blood biochemical indexes. However, diets with a high protein level can improve the apparent digestibility of nutrients and energy use efficiency of Lanzhou fat-tailed sheep.
Collapse
Affiliation(s)
| | | | | | | | | | - Juanshan Zheng
- School of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (N.J.); (W.F.); (C.M.); (H.L.); (J.Z.)
| | - Penghui Guo
- School of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (N.J.); (W.F.); (C.M.); (H.L.); (J.Z.)
| |
Collapse
|
2
|
Wang X, Guo T, Zhang Q, Zhao N, Hu L, Liu H, Xu S. Seasonal variations in composition and function of gut microbiota in grazing yaks: Implications for adaptation to dietary shift on the Qinghai-Tibet plateau. Ecol Evol 2024; 14:e70337. [PMID: 39440203 PMCID: PMC11495855 DOI: 10.1002/ece3.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Gut microbiome of animals is affected by external environmental factors and can assist them in adapting to changing environments effectively. Consequently, elucidating the gut microbes of animals under different environmental conditions can provide a comprehensive understanding of the mechanisms of their adaptations to environmental change, with a particular focus on animals in extreme environments. In this study, we compared the structural and functional differences of the gut microbiome of grazing yaks between the summer and winter seasons through metagenomic sequencing and bioinformatics analysis. The results indicated that the composition and function of microbes changed significantly. The study demonstrated an increase in the relative abundance of Actinobacteria and a higher ratio of Firmicutes to Bacteroidetes (F/B) in winter, this process facilitated the adaptation of yaks to the consumption of low-nutrient forages in the winter. Furthermore, the network structure exhibited greater complexity in the winter. Forage nutrition exhibited a significant seasonal variation, with a notable impact on the gut microbiota. The metagenomic analysis revealed an increase in the abundance of enzymes related to amino acid metabolism, axillary activity, and mucin degradation in the winter. In conclusion, this study demonstrated that the gut microbiome of grazing yaks exhibits several adaptive characteristics that facilitate better nutrient accessibility and acid the host in acclimating to the harsh winter conditions. Furthermore, our study offers novel insights into the mechanisms of highland animal adaptation to external environments from the perspective of the gut microbiome.
Collapse
Affiliation(s)
- Xungang Wang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Tongqing Guo
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Qian Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Na Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Hongjin Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Shixiao Xu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| |
Collapse
|
3
|
Gu M, Liu H, Jiang X, Qiu S, Li K, Lu J, Zhang M, Qiu Y, Wang B, Ma Z, Gan Q. Analysis of Rumen Degradation Characteristics, Attached Microbial Community, and Cellulase Activity Changes of Garlic Skin and Artemisia argyi Stalk. Animals (Basel) 2024; 14:169. [PMID: 38200900 PMCID: PMC10778316 DOI: 10.3390/ani14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of this study was to study the chemical composition, rumen degradation characteristics, surface attached microbial community and cellulase activity of garlic skin (GS) and Artemisia argyi stalk (AS), in order to explain their feeding value. Four 14-month-old healthy Min Dong male goats with permanent rumen fistula were selected as experimental animals. The rumen degradation characteristics of GS and AS were determined by using the nylon bag method, and the bacterial composition, cellulase activity and their relationship on the surface of the two groups were analyzed with high-throughput sequencing of 16S rRNA gene. The results showed that in GS and AS, the effective degradation rate (ED) values of dry matter (DM) were 42.53% and 37.12%, the ED values of crude protein (CP) were 37.19% and 43.38%, the ED values of neutral detergent fiber (NDF) were 36.83% and 36.23%, and the ED values of acid detergent fiber (ADF) were 33.81% and 34.77%. During rumen degradation, the richness and evenness of bacteria attached to the AS surface were higher. At the phylum level, Bacteroidetes and Firmicutes were always the main rumen bacteria in the two groups. At the genus level, fiber-degrading bacteria such as Prevotella, Treponema, and Ruminococcus showed higher levels in GS (p < 0.05). Compared with GS, the activity of β-glucosidase (BG enzyme), endo-β-1,4-glucanase (C1 enzyme), exo-β-1,4-glucanase (Cx enzyme) and neutral xylanase (NEX enzyme) attached to AS surface showed a higher trend. Correlation analysis showed that the relative abundance of Succinivibrio and Rikenellaceae_RC9_gut_group was positively correlated with the rumen degradability of nutrients in GS, and the relative abundance of Christensenellaceae R-7_group, Succinivibrio and Ruminococcus was positively correlated with the rumen degradability of nutrients in AS. The conclusion of this study shows that AS has more potential to become ruminant roughage than GS. In addition, this study also revealed the relationship between cellulase activity and bacteria, which provided new information for us to better analyze the effects of GS and AS on the rumen of ruminants and provided an important theoretical basis for the development and utilization of agricultural by-products.
Collapse
Affiliation(s)
- Mingming Gu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Haoyu Liu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Xinghui Jiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Shuiling Qiu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Keyao Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Jianing Lu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Mingrui Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Yujun Qiu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Benzhi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Zhiyi Ma
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| | - Qianfu Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350000, China; (M.G.); (H.L.); (X.J.); (S.Q.); (J.L.); (M.Z.); (Y.Q.); (B.W.); (Z.M.)
| |
Collapse
|
4
|
Ali S, Ni X, Khan M, Zhao X, Yang H, Danzeng B, Raja IH, Quan G. Effects of Dietary Protein Levels on Sheep Gut Metabolite Profiles during the Lactating Stage. Animals (Basel) 2023; 14:121. [PMID: 38200852 PMCID: PMC10778572 DOI: 10.3390/ani14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Diet-associated characteristics such as dietary protein levels can modulate the gut's primary or secondary metabolites, leading to effects on the productive performance and overall health of animals. Whereas fecal metabolite changes are closely associated with gut metabolome, this study aimed to see changes in the rumen metabolite profile of lactating ewes fed different dietary protein levels. For this, eighteen lactating ewes (approximately 2 years old, averaging 38.52 ± 1.57 kg in their initial body weight) were divided into three groups (n = 6 ewes/group) by following the complete randomized design, and each group was assigned to one of three low-protein (D_I), medium-protein (D_m), and high-protein (D_h) diets containing 8.58%, 10.34%, and 13.93% crude protein contents on a dry basis, respectively. The fecal samples were subjected to untargeted metabolomics using ultra-performance liquid chromatography (UPLC). The metabolomes of the sheep fed to the high-protein-diet group were distinguished as per principal-component analysis from the medium- and low-protein diets. Fecal metabolite concentrations as well as their patterns were changed by feeding different dietary protein levels. The discriminating metabolites between groups of nursing sheep fed different protein levels were identified using partial least-squares discriminant analysis. The pathway enrichment revealed that dietary protein levels mainly influenced the metabolism-associated pathways (n = 63 and 39 in positive as well as negative ionic modes, respectively) followed by protein (n = 15 and 8 in positive as well as negative ionic modes, respectively) and amino-acid (n = 14 and 7 in positive as well as negative ionic modes, respectively) synthesis. Multivariate and univariate analyses showed comparative changes in the fecal concentrations of metabolites in both positive and negative ionic modes. Major changes were observed in protein metabolism, organic-acid biosynthesis, and fatty-acid oxidation. Pairwise analysis and PCA reveal a higher degree of aggregation within the D-h group than all other pairs. In both the PCA and PLS-DA plots, the comparative separation among the D_h/D_m, D_h/D_I, and D_m/D_I groups was superior in positive as well as negative ionic modes, which indicated that sheep fed higher protein levels had alterations in the levels of the metabolites. These metabolic findings provide insights into potentiated biomarker changes in the metabolism influenced by dietary protein levels. The target identification may further increase our knowledge of sheep gut metabolome, particularly regarding how dietary protein levels influence the molecular mechanisms of nutritional metabolism, growth performance, and milk synthesis of sheep.
Collapse
Affiliation(s)
- Sikandar Ali
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Xiaojun Ni
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Muhammad Khan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xiaoqi Zhao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Hongyuan Yang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Baiji Danzeng
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Imtiaz Hussain Raja
- Department of Animal Nutrition, Faculty of Animal Production & Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| |
Collapse
|
5
|
Li M, Zi X, Lv R, Zhang L, Ou W, Chen S, Hou G, Zhou H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023; 11:2320. [PMID: 37764163 PMCID: PMC10535588 DOI: 10.3390/microorganisms11092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.
Collapse
Affiliation(s)
- Mao Li
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Renlong Lv
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Lidong Zhang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wenjun Ou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Songbi Chen
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guanyu Hou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Hanlin Zhou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| |
Collapse
|
6
|
Li Y, Yang Y, Chai S, Pang K, Wang X, Xu L, Chen Z, Li Y, Dong T, Huang W, Liu S, Wang S. Ruminal Fluid Transplantation Accelerates Rumen Microbial Remodeling and Improves Feed Efficiency in Yaks. Microorganisms 2023; 11:1964. [PMID: 37630524 PMCID: PMC10458777 DOI: 10.3390/microorganisms11081964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
A relatively stable microbial ecological balance system in the rumen plays an important role in rumen environment stability and ruminant health maintenance. No studies have reported how rumen fluid transplantation (RFT) affects the composition of rumen microorganisms and yak growth performance. In this experiment, we transplanted fresh rumen fluid adapted to house-feeding yaks to yaks transitioned from natural pastures to house-feeding periods to investigate the effects of rumen fluid transplantation on rumen microbial community regulation and production performance. Twenty yaks were randomly divided into the control group (CON; n = 10) and the rumen fluid transplantation group (RT; n = 10). Ten yaks that had been adapted to stall fattening feed in one month were selected as the rumen fluid donor group to provide fresh rumen fluid. Ruminal fluid transplantation trials were conducted on the 1st, 3rd, and 5th. Overall, 1 L of ruminal fluid was transplanted to each yak in the RT and CON group. The formal trial then began with both groups fed the same diet. After this, growth performance was measured, rumen fluid was collected, and rumen microbial composition was compared using 16s rRNA sequencing data. The results showed that rumen fluid transplantation had no significant effect on yak total weight gain or daily weight gain (p > 0.05), and feed efficiency was higher in the RT group than in the CON group at 3 months (treatment × month: p < 0.01). Ruminal fluid transplantation significantly affected rumen alpha diversity (p < 0.05). Up to day 60, the RT group had significantly higher OTU numbers, Shannon diversity, and Simpson homogeneity than the CON group. Principal coordinate analysis showed that the rumen microbiota differed significantly on days 4 and 7 (p < 0.05). Bacteroidota, Firmicutes, Proteobacteria, and Spirochaetes were the most abundant phyla in the rumen. The relative abundances of Bacteroidota, Proteobacteria, and Spirochaetes were lower in the RT group than in the CON group, with a decrease observed in Bacteroidota in the RT group on days 7 and 28 after rumen fluid transplantation (p = 0.013), while Proteobacteria showed a decreasing trend in the CON group and an increasing trend in RT; however, this was only at day 4 (p = 0.019). The relative abundance of Firmicutes was significantly higher in the RT group than in the CON group on days 4, 7, and 28 (p = 0.001). Prevotella and Rikenellaceae_RC9_gut_group were the predominant genera. In conclusion, our findings suggest that rumen fluid transplantation improves yak growth performance and rumen microbial reshaping. The findings of this study provide new insights into yak microbial community transplantation and a reference for improving feed efficiency in the yak industry.
Collapse
Affiliation(s)
- Yan Li
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Yingkui Yang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Shatuo Chai
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Kaiyue Pang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Xun Wang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Linpeng Xu
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Zheng Chen
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Yumin Li
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Tanqin Dong
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Weihua Huang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Shuxiang Wang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China; (Y.L.); (Y.Y.); (S.C.); (K.P.); (X.W.); (L.X.); (Z.C.); (Y.L.); (T.D.); (W.H.); (S.L.)
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| |
Collapse
|
7
|
High-Grain Diet Feeding Altered Blood Metabolites, Rumen Microbiome, and Metabolomics of Yaks. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Currently, information available on the comprehensive changes in the rumen bacteria and metabolites of yaks fed high-grain diets is limited. This study aimed to investigate the effects of high-grain diet feeding on the blood metabolites, rumen microbiome, and metabolomics of yaks by using 16S rDNA gene sequencing and liquid chromatography–mass spectrometry (LC/MS). Here, fourteen healthy male yaks (body weight, 249.61 ± 8.13 kg) were randomly assigned to two different diets: a hay diet (0% grain, CON, n = 7), or a high-grain diet (70% grain, HG, n = 7). At the 74th day of treatment, blood and ruminal fluid samples were collected for the blood metabolites, rumen microbiome, and metabolomics analyses. The HG diet increased lipopolysaccharides (LPS), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), haptoglobin (HPT), serum amyloid-A (SAA), interleukin-1β (IL1-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) serum concentrations (p < 0.05). Compared with the CON diet, the HG diet decreased rumen pH (p < 0.05), and increased total volatile fatty acids concentration, and proportion of butyrate (p < 0.05). The relative abundance of Firmicutes and Saccharibacteria were higher (p < 0.05), while Bacteroidetes was lower (p < 0.05) in the HG group than those in the CON group. At the genus level, the relative abundance of Christensenelaceae_R-7_group, Ruminococcaceae_NK4A214_group, Lachnospiraceae_NK3A20_group, and Acetitomaculum were higher than in those in the HG diet (p < 0.05). Compared with the CON group, the HG diet increased the concentrations of biogenic amines (histamine, tyramine, and putrescine), common amino acids (phenylalanine, threonine, serine, etc.), and arachidonic acid (prostaglandin H2, prostaglandin E2, 12(S)-HPETE, etc.). Collectively, these findings demonstrate that the HG diet altered the microbiota and metabolites, as well as potentially damaged their rumen health and induced inflammation in yaks.
Collapse
|
8
|
Dai R, Ma X, Dingkao R, Huang C, La Y, Li X, Ma X, Wu X, Chu M, Guo X, Pei J, Yan P, Liang C. Effects of dietary crude protein levels in the concentrate supplement after grazing on rumen microbiota and metabolites by using metagenomics and metabolomics in Jersey-yak. Front Microbiol 2023; 14:1124917. [PMID: 37200912 PMCID: PMC10185794 DOI: 10.3389/fmicb.2023.1124917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction The crude protein level in the diet will affect the fermentation parameters, microflora, and metabolites in the rumen of ruminants. It is of great significance to study the effect of crude protein levels in supplementary diet on microbial community and metabolites for improving animal growth performance. At present, the effects of crude protein level in supplementary diet on rumen fermentation parameters, microbial community, and metabolites of Jersey-Yak (JY) are still unclear. Methods The purpose of this experiment was to study the appropriate crude protein level in the diet of JY. The rumen fermentation indexes (volatile fatty acids and pH) were determined by supplementary diets with crude protein levels of 15.16 and 17.90%, respectively, and the microbial community and metabolites of JYs were analyzed by non-target metabonomics and metagenome sequencing technology, and the changes of rumen fermentation parameters, microbial flora, and metabolites in the three groups and their interactions were studied. Results and Discussion The crude protein level in the supplementary diet had significant effects on pH, valeric acid, and the ratio of acetic acid to propionic acid (p < 0.05). The protein level had no significant effect on the dominant microflora at the phylum level (p > 0.05), and all three groups were Bacteroides and Firmicutes. The results of metabolite analysis showed that the crude protein level of supplementary diet significantly affected the metabolic pathways such as Bile secretion and styrene degradation (p < 0.05), and there were different metabolites between the LP group and HP group, and these different metabolites were related to the dominant microbial to some extent. To sum up, in this experiment, the effects of crude protein level in supplementary diet on rumen microorganisms and metabolites of JY and their relationship were studied, which provided the theoretical basis for formulating a more scientific and reasonable supplementary diet in the future.
Collapse
Affiliation(s)
- Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Renqing Dingkao
- Animal Husbandry Station, Gannan Tibetan Autonomous Prefecture, Gannan, Gansu, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Ping Yan,
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- *Correspondence: Chunnian Liang,
| |
Collapse
|
9
|
Comparative Analysis of the Composition of Fatty Acids and Metabolites between Black Tibetan and Chaka Sheep on the Qinghai-Tibet Plateau. Animals (Basel) 2022; 12:ani12202745. [PMID: 36290131 PMCID: PMC9597813 DOI: 10.3390/ani12202745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
The objective of this study was to investigate and compare fatty acids and metabolites in the longissimus dorsi muscle between Black Tibetan and Chaka sheep grazing in a highly saline environment. A total of eight castrated sheep (14 months old) with similar body weights (25 ± 2.2 kg) were selected. The experimental treatments included Black Tibetan (BT) and Chaka sheep (CK) groups, and each group had four replications. The experiment lasted for 20 months. All sheep grazed in a highly saline environment for the whole experimental period and had free access to water. The results showed that the diameter (42.23 vs. 51.46 μm), perimeter (131.78 vs. 166.14 μm), and area of muscle fibers (1328.74 vs. 1998.64 μm2) were smaller in Chaka sheep than in Black Tibetan sheep. The ash content in the longissimus dorsi was lower in Chaka sheep than in Black Tibetan sheep (p = 0.010), and the contents of dry matter (DM), ether extract (EE), and crude protein (CP) in the longissimus dorsi showed no differences (p > 0.05). For fatty acids, the proportions of C10:0, C15:0, and tC18:1 in the longissimus dorsi were higher in Chaka sheep than in Black Tibetan sheep (p < 0.05). However, all other individual fatty acids were similar among treatments, including saturated fatty acids (SFAs), unsaturated fatty acids (UFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and the ratios of n-6 PUFAs to n-3 PUFAs and PUFAs to SFAs (p > 0.05). A total of 65 biomarkers were identified between the two breeds of sheep. Among these metabolites, 40 metabolic biomarkers were upregulated in the CK group compared to the BT group, and 25 metabolites were downregulated. The main metabolites include 30 organic acids, 9 amino acids, 5 peptides, 4 amides, 3 adenosines, 2 amines, and other compounds. Based on KEGG analysis, eight pathways, namely, fatty acid biosynthesis, purine metabolism, the biosynthesis of unsaturated fatty acids, renin secretion, the regulation of lipolysis in adipocytes, neuroactive ligand−receptor interaction, the cGMP-PKG signaling pathway, and the cAMP signaling pathway, were identified as significantly different pathways. According to the results on fatty acids and metabolites, upregulated organic acid and fatty acid biosynthesis increased the meat quality of Chaka sheep.
Collapse
|
10
|
Pang K, Yang Y, Chai S, Li Y, Wang X, Sun L, Cui Z, Wang S, Liu S. Dynamics Changes of the Fecal Bacterial Community Fed Diets with Different Concentrate-to-Forage Ratios in Qinghai Yaks. Animals (Basel) 2022; 12:ani12182334. [PMID: 36139194 PMCID: PMC9495249 DOI: 10.3390/ani12182334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: This study aimed to investigate the effects of different dietary concentrate to roughage ratios on growth performance and fecal microbiota composition of yaks by 16S rRNA gene sequencing. (2) Methods: In the present study, three diets with different dietary forage-to-concentrate ratios (50:50, 65:35, and 80:20) were fed to 36 housed male yaks. (3) Results: The result shows that Final BW, TWG, and ADG were higher in the C65 group than in the C50 and C80 groups, but the difference was not significant (p > 0.05). DMI in the C65 group was significantly higher than in the other two groups (p < 0.05). The DMI/ADG of the C65 group was lower than that of the other two groups, but the difference was insignificant (p > 0.05). At the phylum level, Firmicutes were the most abundant in the C65 group, and the relative abundance of Bacteroidetes was lower in the C65 group than in the other two groups. At the genus level, the relative abundances of Ruminococcaceae_UCG_005, Romboutsia, and Christensenellaceae_R-7 were higher in the C56 group than in the C50 and C80 groups. The relative abundance of Lachnospiraceae_NK3A20 and Rikenellaceaewas_RC9_gut is lower in the C65 group, but the difference was insignificant (p > 0.05). At KEGG level 2, the relative abundance of lipid metabolism and energy metabolism were lowest in the C50 group, and both showed higher relative abundance in the C65 group. (4) Conclusions: In conclusion, the structure of fecal microbiota was affected by different concentrate-to-forage ratios. We found that feeding diets with a concentrate-to-forage ratio of 65:35 improved yaks’ growth and energy metabolism.
Collapse
Affiliation(s)
- Kaiyue Pang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Yingkui Yang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Shatuo Chai
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Yan Li
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Xun Wang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Lu Sun
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Zhanhong Cui
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
| | - Shuxiang Wang
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Correspondence: (S.W.); (S.L.); Tel.: +86-010-6273-1254 (S.W. & S.L.)
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Husbandry, Veterinary Sciences in Qinghai University, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Correspondence: (S.W.); (S.L.); Tel.: +86-010-6273-1254 (S.W. & S.L.)
| |
Collapse
|
11
|
Wang X, Xu T, Zhang X, Zhao N, Hu L, Liu H, Zhang Q, Geng Y, Kang S, Xu S. The Response of Ruminal Microbiota and Metabolites to Different Dietary Protein Levels in Tibetan Sheep on the Qinghai-Tibetan Plateau. Front Vet Sci 2022; 9:922817. [PMID: 35847641 PMCID: PMC9277223 DOI: 10.3389/fvets.2022.922817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ruminal microbiota and metabolites play crucial roles in animal health and productivity. Exploring the dynamic changes and interactions between microbial community composition and metabolites is important for understanding ruminal nutrition and metabolism. Tibetan sheep (Ovis aries) are an important livestock resource on the Qinghai-Tibetan Plateau (QTP), and the effects of various dietary protein levels on ruminal microbiota and metabolites are still unknown. The aim of this study was to investigate the response of ruminal microbiota and metabolites to different levels of dietary protein in Tibetan sheep. Three diets with different protein levels (low protein 10.1%, medium protein 12.1%, and high protein 14.1%) were fed to Tibetan sheep. 16S rRNA gene sequencing and gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) were used to study the profile changes in each group of ruminal microbes and metabolites, as well as the potential interaction between them. The rumen microbiota in all groups was dominated by the phyla Bacteroidetes and Firmicutes regardless of the dietary protein level. At the genus level, Prevotella_1, Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-001 were dominant. Under the same forage-to-concentrate ratio condition, the difference in the dietary protein levels had no significant impact on the bacterial alpha diversity index and relative abundance of the major phyla and genera in Tibetan sheep. Rumen metabolomics analysis revealed that dietary protein levels altered the concentrations of ruminal amino acids, carbohydrates and organic acids, and significantly affected tryptophan metabolism (p < 0.05). Correlation analysis of the microbiota and metabolites revealed positive and negative regulatory mechanisms. Overall, this study provides detailed information on rumen microorganisms and ruminal metabolites under different levels of dietary protein, which could be helpful in subsequent research for regulating animal nutrition and metabolism through nutritional interventions.
Collapse
Affiliation(s)
- Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tianwei Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaoling Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyue Geng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shengping Kang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
12
|
Zhu C, Yang J, Wu Q, Chen J, Yang X, Wang L, Jiang Z. Low Protein Diet Improves Meat Quality and Modulates the Composition of Gut Microbiota in Finishing Pigs. Front Vet Sci 2022; 9:843957. [PMID: 35656169 PMCID: PMC9152361 DOI: 10.3389/fvets.2022.843957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
This study investigated the effect of a low protein (LP) diet on growth performance, nitrogen emission, carcass traits, meat quality, and gut microbiota in finishing pigs. Fifty-four barrows (Duroc × Landrace × Yorkshire) were randomly assigned to three treatments with six replicates (pens) of three pigs each. The pigs were fed with either high protein (HP, 16% CP), medium protein (MP, 12% CP), and LP diets (10% CP), respectively. The LP diets did not influence the growth performance, but significantly decreased the plasma urea nitrogen contents and fecal nitrogen emission (P < 0.05). The LP diet significantly decreased the plasma contents of malondialdehyde (MDA) and increased the plasma glutathione (GSH) contents (P < 0.05). The LP diets significantly increased the backfat thickness at the first and last ribs, L* (lightness) value of meat color, and muscle fiber density in the longissimus dorsi (P < 0.05). The messenger RNA (mRNA) expression of fatty acid synthetase (FAS), peroxisome proliferator-activated receptor-gamma (PPARγ), leptin, and acetyl-CoA carboxylase (ACC) was significantly downregulated, while that of carnitine palmitoyltransferase 1 (CPT1) and myosin heavy chain (MYHC) IIx in the longissimus Dorsi muscle was significantly upregulated by LP diets (P < 0.05). The 16S sequencing analysis showed that the abundance of unidentified Bacteria at the phylum level, and Halanaerobium and Butyricicoccusat at the genus level in the colonic digesta were significantly decreased by LP diet (P < 0.05). The LP diet significantly decreased the observed species of α-diversity in both ileal and colonic microbiota (P < 0.05). Spearman correlation analysis identified a significant positive correlation between the abundance of the ileal genera Streptococcus and L* value at 24 and 48 h, and a significant negative correlation between unidentified_Ruminococcasceae in both ileum and colon with L* value at 24 h (P < 0.05). Collectively, the LP diet supplemented with lysine, methionine, threonine, and tryptophan could reduce the fecal nitrogen emission without affecting growth performance and improve meat quality by regulating the antioxidant capacity and gene expression involved in fat metabolism as well as modulating the gut microbiota composition in finishing pigs.
Collapse
Affiliation(s)
- Cui Zhu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jingsen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qiwen Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingping Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Li Wang
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Zongyong Jiang
| |
Collapse
|
13
|
Preliminary Investigation of Mixed Orchard Hays on the Meat Quality, Fatty Acid Profile, and Gastrointestinal Microbiota in Goat Kids. Animals (Basel) 2022; 12:ani12060780. [PMID: 35327177 PMCID: PMC8944599 DOI: 10.3390/ani12060780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
This preliminary investigation was designed to study the effects of different mixed orchard hays on meat quality, fatty acids, amino acids, rumen intestinal microflora, and the relationship between rumen bacteria and fatty acids in the longissimus dorsi muscle of Saanen dairy goats. In this preliminary investigation, goats were separately fed crop straws (corn and wheat straws) and alfalfa (Medicago sativa L.) (CK group), alfalfa + oats (Avena sativa L.) (group I), alfalfa + perennial ryegrass (Lolium perenne L.) (group II), and hairy vetch (Vicia villosa Roth.) + perennial ryegrass (group III). There were differences in shear force and cooking loss between treatments. The contents of saturated fatty acids (SFAs) C14:0, C16:0, and C18:0 in the CK group were significantly higher than those in other three groups (p < 0.001). The 16S rDNA sequencing results showed that the relative abundance of Proteobacteria in group II were higher than those in other three groups (p < 0.05). Association analysis showed that Prevotella_1 was negatively correlated with C18:0 and significantly positively correlated with C16:1, while Clostridium and Romboutsia showed a positive correlation with monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Therefore, feeding mixed hays can increase beneficial fatty acids and the percentages of associated bacteria in rumen and intestines.
Collapse
|