1
|
Sapkota A, Park EJ, Kim YJ, Heo JB, Nguyen TQ, Heo BE, Kim JK, Lee SH, Kim SI, Choi YJ, Roh T, Jeon SM, Jang M, Heo HJ, Whang J, Paik S, Yuk JM, Kim JM, Song GY, Jang J, Jo EK. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB. Biomed Pharmacother 2024; 179:117313. [PMID: 39167844 DOI: 10.1016/j.biopha.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Mycobacteroides abscessus (Mabc) is a rapidly growing nontuberculous mycobacterium that poses a considerable challenge as a multidrug-resistant pathogen causing chronic human infection. Effective therapeutics that enhance protective immune responses to Mabc are urgently needed. This study introduces trans-3,5,4'-trimethoxystilbene (V46), a novel resveratrol analogue with autophagy-activating properties and antimicrobial activity against Mabc infection, including multidrug-resistant strains. Among the resveratrol analogues tested, V46 significantly inhibited the growth of both rough and smooth Mabc strains, including multidrug-resistant strains, in macrophages and in the lungs of mice infected with Mabc. Additionally, V46 substantially reduced Mabc-induced levels of pro-inflammatory cytokines and chemokines in both macrophages and during in vivo infection. Mechanistic analysis showed that V46 suppressed the activation of the protein kinase B/Akt-mammalian target of rapamycin signaling pathway and enhanced adenosine monophosphate-activated protein kinase signaling in Mabc-infected cells. Notably, V46 activated autophagy and the nuclear translocation of transcription factor EB, which is crucial for antimicrobial host defenses against Mabc. Furthermore, V46 upregulated genes associated with autophagy and lysosomal biogenesis in Mabc-infected bone marrow-derived macrophages. The combination of V46 and rifabutin exerted a synergistic antimicrobial effect. These findings identify V46 as a candidate host-directed therapeutic for Mabc infection that activates autophagy and lysosomal function via transcription factor EB.
Collapse
Affiliation(s)
- Asmita Sapkota
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong Beom Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University, School of Medicine, Daegu, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea
| | - Soo In Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yoon-Jung Choi
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Taylor Roh
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Min Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Marnpyung Jang
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hae Joon Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center & Basic Research Section, The Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea.
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
3
|
Jordan S, Li B, Traore E, Wu Y, Usai R, Liu A, Xie ZR, Wang Y. Structural and spectroscopic characterization of RufO indicates a new biological role in rufomycin biosynthesis. J Biol Chem 2023; 299:105049. [PMID: 37451485 PMCID: PMC10424215 DOI: 10.1016/j.jbc.2023.105049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Rufomycins constitute a class of cyclic heptapeptides isolated from actinomycetes. They are secondary metabolites that show promising treatment against Mycobacterium tuberculosis infections by inhibiting a novel drug target. Several nonproteinogenic amino acids are integrated into rufomycins, including a conserved 3-nitro-tyrosine. RufO, a cytochrome P450 (CYP)-like enzyme, was proposed to catalyze the formation of 3-nitro-tyrosine in the presence of O2 and NO. To define its biological function, the interaction between RufO and the proposed substrate tyrosine is investigated using various spectroscopic methods that are sensitive to the structural change of a heme center. However, a low- to high-spin state transition and a dramatic increase in the redox potential that are commonly found in CYPs upon ligand binding have not been observed. Furthermore, a 1.89-Å crystal structure of RufO shows that the enzyme has flexible surface regions, a wide-open substrate access tunnel, and the heme center is largely exposed to solvent. Comparison with a closely related nitrating CYP reveals a spacious and hydrophobic distal pocket in RufO, which is incapable of stabilizing a free amino acid. Molecular docking validates the experimental data and proposes a possible substrate. Collectively, our results disfavor tyrosine as the substrate of RufO and point to the possibility that the nitration occurs during or after the assembly of the peptides. This study indicates a new function of the unique nitrating enzyme and provides insights into the biosynthesis of nonribosomal peptides.
Collapse
Affiliation(s)
- Stephanie Jordan
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Bingnan Li
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Ephrahime Traore
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yifei Wu
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Remigio Usai
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
4
|
Hong J, Duc NM, Jeong BC, Cho S, Shetye G, Cao J, Lee H, Jeong C, Lee H, Suh JW. Identification of the inhibitory mechanism of ecumicin and rufomycin 4-7 on the proteolytic activity of Mycobacterium tuberculosis ClpC1/ClpP1/ClpP2 complex. Tuberculosis (Edinb) 2023; 138:102298. [PMID: 36580851 PMCID: PMC9892302 DOI: 10.1016/j.tube.2022.102298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Ecumicin and rufomycin 4-7 disrupt protein homeostasis in Mycobacterium tuberculosis by inhibiting the proteolytic activity of the ClpC1/ClpP1/ClpP2 complex. Although these compounds target ClpC1, their effects on the ATPase activity of ClpC1 and proteolytic activity of ClpC1/ClpP1/ClpP2 vary. Herein, we explored the ClpC1 molecular dynamics with these compounds through fluorescence correlation spectroscopy. The effect of these compounds on the ATPase activity of ClpC1-cys, the recombinant protein for fluorescence labeling, and proteolytic activity of ClpC1-cys/ClpP1/ClpP2 were identical to those of native ClpC1, whereas the intermolecular dynamics of fluorescence-labelled ClpC1 were different. Treatment with up to 1 nM ecumicin increased the population of slower diffused ClpC1 components compared with ClpC1 without ecumicin. However, this population was considerably reduced when treated with 10 nM ecumicin. Rufomycin 4-7 treatment resulted in a slower diffused component of ClpC1, and the portion of this component increased in a concentration-dependent manner. Ecumicin can generate an abnormal ClpC1 component, which cannot form normal ClpC1/ClpP1/ClpP2, via two different modes. Rufomycin 4-7 only generates slower diffused ClpC1 component that is inadequate to form normal ClpC1/ClpP1/ClpP2. Overall, we demonstrate that ecumicin and rufomycin 4-7 use different action mechanisms to generate abnormal ClpC1 components that cannot couple with ClpP1/ClpP2.
Collapse
Affiliation(s)
- Jeongpyo Hong
- Interdisciplinary Program of Biomodulation, Graduate School, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Nguyen Minh Duc
- Interdisciplinary Program of Biomodulation, Graduate School, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Byeong-Chul Jeong
- Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Sanghyun Cho
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Gauri Shetye
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Jin Cao
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Hyun Lee
- Biophysics Core at Resource Center, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Cherlhyun Jeong
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, Republic of Korea.
| | - Hanki Lee
- Interdisciplinary Program of Biomodulation, Graduate School, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Joo-Won Suh
- MJ Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|