1
|
Yang X, Cao S, Sun H, Deng Y, Zhang X, Li Y, Ma D, Chen H, Li W. The critical roles of the Zn 2Cys 6 transcription factor Fp487 in the development and virulence of Fusarium pseudograminearum: A potential target for Fusarium crown rot control. Microbiol Res 2024; 285:127784. [PMID: 38824820 DOI: 10.1016/j.micres.2024.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yan Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Cai E, Zeng R, Feng R, Zhang L, Li L, Jia H, Zheng W, Chen S, Yan M, Chang C. Discovery of N-Benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a Potential Antifungal Agent against Sporidia Growth and Teliospore Germination of Sporisorium scitamineum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3325-3333. [PMID: 38329286 DOI: 10.1021/acs.jafc.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cultivation of sugar cane using perennial roots is the primary planting method, which is one of the reasons for the serious occurrence of sugar cane smut disease caused by the basidiomycetous fungus Sporisorium scitamineum in the sugar cane perennial root planting area. Consequently, it is crucial to eliminate pathogens from perennial sugar cane buds. In this study, we found that MAP kinase Hog1 is necessary for heat stress resistance. Subsequent investigations revealed a significant reduction in the expression of the heat shock protein 104-encoding gene, SsHSP104, in the ss1hog1Δ mutant. Additionally, the overexpression of SsHSP104 partially restored colony growth in the ss1hog1Δ strain following heat stress treatment, demonstrating the crucial role of SsHsp104 in SsHog1-mediated heat stress tolerance. Hence, we constructed the ss1hsp104:eGFP fusion strain in the wild type of S. scitamineum to identify small-molecule compounds that could inhibit the heat stress response, leading to the discovery of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a potential compound that targets the SsHog1 mediation SsHsp104 pathway during heat treatment. Furthermore, the combination of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine and warm water treatment (45 °C for 15 min) inhibits the growth of S. scitamineum and teliospore germination, thereby reducing the occurrence of sugar cane smut diseases and indicating its potential for eliminating pathogens from perennial sugar cane buds. In conclusion, these findings suggest that N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine is promising as a targeted compound for the SsHog1-mediated SsHsp104 pathway and may enable the reduction of hot water treatment duration and/or temperature, thereby limiting the occurrence of sugar cane smut diseases caused by S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruqing Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huan Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wenqiang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shaofang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Seekles SJ, van den Brule T, Punt M, Dijksterhuis J, Arentshorst M, Ijadpanahsaravi M, Roseboom W, Meuken G, Ongenae V, Zwerus J, Ohm RA, Kramer G, Wösten HAB, de Winde JH, Ram AFJ. Compatible solutes determine the heat resistance of conidia. Fungal Biol Biotechnol 2023; 10:21. [PMID: 37957766 PMCID: PMC10644514 DOI: 10.1186/s40694-023-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Tom van den Brule
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Maarten Punt
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Maryam Ijadpanahsaravi
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Gwendolin Meuken
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Véronique Ongenae
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Jordy Zwerus
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Robin A Ohm
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Han A B Wösten
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Johannes H de Winde
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Arthur F J Ram
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands.
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| |
Collapse
|
4
|
Gardner H, Onofre KFA, De Wolf ED. Characterizing the Response of Puccinia striiformis f. sp. tritici to Periods of Heat Stress that Are Common in Kansas and the Great Plains Region of North America. PHYTOPATHOLOGY 2023; 113:1457-1464. [PMID: 37097624 DOI: 10.1094/phyto-12-22-0475-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, is considered a disease of cool environments, and it has been observed that high temperatures can suppress disease development. However, recent field observations in Kansas suggest that the pathogen may be recovering from heat stress more quickly than expected. Previous research indicates that some strains of this pathogen were adapted to warm temperature regimes but did not consider how the pathogen responds to periods of heat stress that are common in the Great Plains region of North America. Therefore, the objectives of this study were to characterize the response of contemporary isolates of P. striiformis f. sp. tritici to periods of heat stress and to look for evidence of temperature adaptations within the pathogen population. These experiments evaluated nine isolates of the pathogen: eight isolates collected in Kansas between 2010 and 2021 and a historical reference isolate. Treatments compared the latent period and colonization rate of isolates given a cool temperature regime (12 to 20°C) and as they recovered from 7 days of heat stress (22 to 35°C). Results documented that contemporary isolates of the pathogen had similar latent periods and colonization rates as the historical reference under the cool temperature regime. Following exposure to 7 days of heat stress, the contemporary isolates had shorter latent periods and higher colonization rates than the historical isolate. There was also variability in how the contemporary isolates recovered from heat stress, with some isolates collected during 2019 to 2021 recovering sooner than those collected just 5 to 10 years ago.
Collapse
Affiliation(s)
- Heather Gardner
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | | | - Erick D De Wolf
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
5
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
6
|
Wu Y, Wang Y, Han S, Li Q, Kong L. The global regulator FpLaeB is required for the regulation of growth, development, and virulence in Fusarium pseudograminearum. FRONTIERS IN PLANT SCIENCE 2023; 14:1132507. [PMID: 36909432 PMCID: PMC9994621 DOI: 10.3389/fpls.2023.1132507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Fusarium pseudograminearum is a soil-borne pathogen that is capable of causing a highly destructive crown disease in wheat. Secondary metabolites (SMs), especially deoxynivalenol (DON), are the primary virulence factors during infection. Here, we characterised the global regulator FpLaeB, an orthologue of LaeB protein function, to regulate the SM in Aspergillus nidulans. Through the utility of the gene targeting approach, we found that the vegetative growth of the FpLaeB deletion mutant was drastically reduced compared to that of the wild type. FpLaeB was also important for conidiation because the FpLaeB deletion mutant formed fewer conidia in induced medium. In addition, the sensitivity of the FpLaeB deletion mutant to the cell wall integrity inhibitor was decreased, while its growth was more severely inhibited by the cell membrane inhibitor sodium dodecyl sulfate (SDS) than that of the wild type. More importantly, the virulence was decreased when the FpLaeB deletion mutant was inoculated onto the wheat stem base or head. Through genome-wide gene expression profiling, FpLaeB was found to regulate several processes related to the above phenotypes such as the carbohydrate metabolic process, which is an integral and intrinsic component of membranes, especially SMs. Furthermore, the generation of DON was impaired in the FpLaeB deletion mutant via ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay. These results showed that FpLaeB plays an important role in the growth, development, and maintenance of the cell wall, and in membrane integrity. More importantly, FpLaeB is required for SMs and full virulence in F. pseudograminearum.
Collapse
|
7
|
Response and regulatory mechanisms of heat resistance in pathogenic fungi. Appl Microbiol Biotechnol 2022; 106:5415-5431. [PMID: 35941254 PMCID: PMC9360699 DOI: 10.1007/s00253-022-12119-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Abstract Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, conservative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a challenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi. Key points • Mechanisms of fungal perception of heat pressure are reviewed. • The regulatory mechanism of fungal resistance to heat stress is discussed. • The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.
Collapse
|