1
|
Li M, Jiang H, Li R, Liu W, Xie Y, Wu W, Liu D, Wu M, Qiu Z. Effects of biochar-loaded microbial agent in regulating nitrogen transformation and integration into humification for straw composting. BIORESOURCE TECHNOLOGY 2025; 417:131873. [PMID: 39586479 DOI: 10.1016/j.biortech.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Exogenous additives can impact organic matter transformation in composting, but their effects on nitrogen conversion and humification in straw composting require clarification. This study investigated how rice husk biochar-loaded microbial agent (RM) affects nitrogen transformation and humification during straw composting. Results showed that the addition of RM enhanced ammonia oxidation and assimilation during composting, leading to a 10.32%-22.27% increase in total nitrogen content. Furthermore, the RM treatment enriched nitrogen-converting microbes such as Longispora and Coprinopsis, enhancing synergistic relationships among microbes, facilitating the accumulation of pivotal nitrogenous humus precursors (amino acid nitrogen), and promoting humus formation. This research not only guides reducing nitrogen loss during composting and elucidating the relationship between nitrogen transformation and humification but also contributes to enhancing bioconversion efficiency of agricultural waste to explore new ways of straw waste management.
Collapse
Affiliation(s)
- Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Hui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Ruiding Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wendong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Yong Xie
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenchan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Dongyang Liu
- Liangshan Prefecture Company, Sichuan Tobacco Company, China National Tobacco Corporation, Liangshan 615000, Sichuan, PR China
| | - Minghui Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| |
Collapse
|
2
|
Abdelfadil MR, Patz S, Kolb S, Ruppel S. Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops. ENVIRONMENTAL MICROBIOME 2024; 19:49. [PMID: 39026296 PMCID: PMC11256479 DOI: 10.1186/s40793-024-00592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches. RESULTS Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter. CONCLUSIONS Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.
Collapse
Affiliation(s)
- Mohamed R Abdelfadil
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany.
- Department of Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Großbeeren, Germany.
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374, Müncheberg, Germany.
| | - Sascha Patz
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany
| | - Steffen Kolb
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374, Müncheberg, Germany
| | - Silke Ruppel
- Department of Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Großbeeren, Germany
| |
Collapse
|
3
|
Zhang S, Gao W, Xie L, Zhang G, Wei Z, Li J, Song C, Chang M. Malonic acid shapes bacterial community dynamics in compost to promote carbon sequestration and humic substance synthesis. CHEMOSPHERE 2024; 350:141092. [PMID: 38169202 DOI: 10.1016/j.chemosphere.2023.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.
Collapse
Affiliation(s)
- Shubo Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mingkai Chang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
4
|
Wang Q, He D, Zhang X, Cheng Y, Sun Y, Zhu J. Insight into bacterial and archaeal community structure of Suaeda altissima and Suaeda dendroides rhizosphere in response to different salinity level. Microbiol Spectr 2024; 12:e0164923. [PMID: 38038455 PMCID: PMC10783136 DOI: 10.1128/spectrum.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/08/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Suaeda play an important ecological role in reclamation and improvement of agricultural saline soil due to strong salt tolerance. At present, research on Suaeda salt tolerance mainly focuses on the physiological and molecular regulation. However, the important role played by microbial communities in the high-salinity tolerance of Suaeda is poorly studied. Our findings have important implications for understanding the distribution patterns and the driving mechanisms of different Suaeda species and soil salinity levels. In addition, we explored the key microorganisms that played an important ecological role in Suaeda rhizosphere. We provide a basis for biological improvement and ecological restoration of salinity-affected areas.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Dalun He
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Xinrui Zhang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yongxiang Cheng
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Jianbo Zhu
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Wang B, Chen C, Xiao Y, He Y, Gao Y, Kang Z, Wei X, Deng Y, Feng S, Zhou G. Geographically associated endophytic fungi contribute to the tropane alkaloids accumulation of Anisodus tanguticus. FRONTIERS IN PLANT SCIENCE 2023; 14:1297546. [PMID: 38098791 PMCID: PMC10720625 DOI: 10.3389/fpls.2023.1297546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Anisodus tanguticus is a valuable plant for extracting tropane alkaloids. However, the mechanisms by which plant microbiome mediate the accumulation of tropane alkaloids in Anisodus tanguticus are still not well understood. In this study, we collected 55 wild Anisodus tanguticus populations on the Tibetan Plateau and the tropane alkaloids content, and root-related bacteria and fungi diversity were analyzed using HPLC and 16 s rDNA and ITS sequencing. The results showed that tropane alkaloids content has obvious geographical distribution characteristics. Anisodine content had a significant positive correlation with latitude, while anisodamine and atropine content had a significant negative correlation with latitude. Variation partition analysis (VPA) showed that root endophytes play a significant role in promoting tropane alkaloid production in Anisodus tanguticus roots. The root endophytes alone explained 14% of the variation, which was the largest contributor. Soil properties variables could independently explain 5% of the variation, and climate variables could explain 1% of the variation. Of these, endophytic fungi alone accounted for 11%, while bacteria explained only 5%. Random forests and Mantel test showed that different regionally enriched endophytic fungi have a greater impact on the accumulation of tropane alkaloids than the whole endophytic fungi. Richness and relative abundance of enriched endophytic fungi in Hengduan-Qilian Mountains (HQ) group has a significant positive correlation with anisodine content, while richness and relative abundance of enriched endophytic fungi in Himalayas-Hengduan Mountains (HH) group has a significant positive correlation with anisodamine and atropine content. And, these enriched endophytic fungi have high network connectivity and distributed in separate network modules. This study further confirmed that endophytes were closely related to tropane alkaloids accumulation in Anisodus tanguticus and contribute to promote sustainable development, cultivation, and precision medicine of Anisodus tanguticus.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuanming Xiao
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yan He
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Ying Gao
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Zongxiu Kang
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Xiaoxuan Wei
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Yujie Deng
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Shihong Feng
- Chengdu Tianxianzi agricultural science and technology development Co., LTD, Chengdu, China
| | - Guoying Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| |
Collapse
|
6
|
Dubey S, Bhattacharjee A, Pradhan S, Kumar A, Sharma S. Composition of fungal communities upon multiple passaging of rhizosphere microbiome for salinity stress mitigation in Vigna radiata. FEMS Microbiol Ecol 2023; 99:fiad132. [PMID: 37838474 DOI: 10.1093/femsec/fiad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
The top-down approach of microbiome-mediated rhizosphere engineering has emerged as an eco-friendly approach for mitigating stress and enhancing crop productivity. It has been established to mitigate salinity stress in Vigna radiata using multi-passaging approach. During the process of acclimatization under increasing levels of salinity stress, the structure of rhizospheric microbial community undergoes dynamic changes, while facilitating stress mitigation in plants. In this study, using ITS-based amplicon sequencing, the dynamics of rhizosphere fungal community was unravelled over successive passages under salinity stress in V. radiata. Clear shifts were evident among the fungal community members under stress and non-stress conditions, upon application of acclimatized rhizosphere microbiome in V. radiata across successive passages. These shifts correlated with enhanced plant biometrics and reduced stress marker levels in plant. Significant changes in the fungal community structure were witnessed in the rhizosphere across specific passaging cycles under salinity stress, which possibly facilitated stress mitigation in V. radiata.
Collapse
Affiliation(s)
- Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Salila Pradhan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Abhay Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
Wang R, Liu T, Lu C, Zhang Z, Guo P, Jia B, Hao B, Wang Y, Guo W. Bioorganic fertilizers improve the adaptability and remediation efficiency of Puccinellia distans in multiple heavy metals-contaminated saline soil by regulating the soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130982. [PMID: 36860055 DOI: 10.1016/j.jhazmat.2023.130982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization and heavy metal (HM) pollution are global environmental problems. Bioorganic fertilizers facilitate phytoremediation, but their roles and microbial mechanisms in natural HM-contaminated saline soils have not been explored. Therefore, greenhouse pot trials were conducted with three treatments: control (CK), manure bioorganic fertilizer (MOF), and lignite bioorganic fertilizer (LOF). The results showed that MOF and LOF significantly increased nutrient uptake, biomass, toxic ion accumulation in Puccinellia distans, soil available nutrients, SOC, and macroaggregates. More biomarkers were enriched in MOF and LOF. Network analysis confirmed that MOF and LOF increased the number of bacterial functional groups and fungal community stability and strengthened their positive association with plants; Bacteria have a more significant effect on phytoremediation. Most biomarkers and keystones play important roles in promoting plant growth and stress resistance in the MOF and LOF treatments. In summary, besides enrichment of soil nutrients, MOF and LOF can also improve the adaptability and phytoremediation efficiency of P. distans by regulating the soil microbial community, with LOF having a greater effect.
Collapse
Affiliation(s)
- Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
8
|
Luo J, Liu T, Diao F, Hao B, Zhang Z, Hou Y, Guo W. Shift in rhizospheric and endophytic microbial communities of dominant plants around Sunit Alkaline Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161503. [PMID: 36634786 DOI: 10.1016/j.scitotenv.2023.161503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Alkaline lakes are a special type of extreme saline-alkali ecosystem, and the dominant plants store a large number of microbial resources with salinity-tolerant or growth-promoting properties in the littoral zones. In this study, high-throughput sequencing technology and molecular ecological networks were used to analyze the bacteria and fungi from different rhizocompartments of three dominant plants along the salinity gradient in the littoral zones of Sunit Alkali Lake. The study found that fungal communities were more tolerant of environmental abiotic stress, and salinity was not the main environmental factor affecting the composition of microbial communities. Mantel test analysis revealed that SOC (soil organic carbon) was the primary environmental factor affecting the rhizosphere bacterial community as well as the rhizosphere endophyte bacteria and fungi, while CO32- (carbonate ions) had a greater impact on the rhizosphere fungal communities. In addition, keystones identified through the associated molecular network play an important role in helping plants resist saline-alkali environments. There were significant differences in the metabolic pathways of microorganisms from different rhizocompartments predicted by the PICRUSt2 database, which may help to understand how microorganisms resist environmental stress. This study is of great importance for understanding the salt environments around alkaline lakes and excavating potential microbial resources.
Collapse
Affiliation(s)
- Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - ZheChao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
9
|
Li B, Liu X, Zhu D, Su H, Guo K, Sun G, Li X, Sun L. Crop diversity promotes the recovery of fungal communities in saline-alkali areas of the Western Songnen Plain. Front Microbiol 2023; 14:1091117. [PMID: 36819047 PMCID: PMC9930164 DOI: 10.3389/fmicb.2023.1091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Phytoremediation is an effective strategy for saline land restoration. In the Western Songnen Plain, northeast China, soil fungal community recovery for saline phytoremediation has not been well documented among different cropping patterns. In this study, we tested how rotation, mixture, and monoculture cropping patterns impact fungal communities in saline-alkali soils to assess the variability between cropping patterns. Methods The fungal communities of the soils of the different cropping types were determined using Illumina Miseq sequencing. Results Mixture and rotation promoted an increase in operational taxonomic unit (OTU) richness, and OTU richness in the mixture system decreased with increasing soil depth. A principal coordinate analysis (PCoA) showed that cropping patterns and soil depths influenced the structure of fungal communities, which may be due to the impact of soil chemistry. This was reflected by soil total nitrogen (TN) and electrical conductivity (EC) being the key factors driving OTU richness, while soil available potassium (AK) and total phosphorus (TP) were significantly correlated with the relative abundance of fungal dominant genus. The relative abundance of Leptosphaerulina, Alternaria, Myrothecium, Gibberella, and Tetracladium varied significantly between cropping patterns, and Leptosphaerulina was significantly associated with soil chemistry. Soil depth caused significant differences in the relative abundance of Fusarium in rotation and mixture soils, with Fusarium more commonly active at 0-15 cm deep soil. Null-model analysis revealed that the fungal community assembly of the mixture soils in 0-15 cm deep soil was dominated by deterministic processes, unlike the other two cropping patterns. Furthermore, fungal symbiotic networks were more complex in rotation and mixture than in monoculture soils, reflected in more nodes, more module hubs, and connectors. The fungal networks in rotation and mixture soils were more stable than in monoculture soils, and mixture networks were obviously more connected than rotations. FUNGuild showed that the relative proportion of saprotroph in rotation and mixture was significantly higher than that in monocultures. The highest proportion of pathotroph and symbiotroph was exhibited in rotation and mixture soils, respectively. Discussion Overall, mixture is superior to crop rotation and monocultures in restoring fungal communities of the saline-alkali soils of the Western Songnen Plain, northeast China.
Collapse
Affiliation(s)
- Bin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Dan Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Heng Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China,School of Forestry, Northeast Forestry University, Harbin, China,*Correspondence: Xin Li, ✉
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China,Lei Sun, ✉
| |
Collapse
|
10
|
Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:930340. [PMID: 36082294 PMCID: PMC9445558 DOI: 10.3389/fpls.2022.930340] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 05/09/2023]
Abstract
With the increase in world population, the demography of humans is estimated to be exceeded and it has become a major challenge to provide an adequate amount of food, feed, and agricultural products majorly in developing countries. The use of chemical fertilizers causes the plant to grow efficiently and rapidly to meet the food demand. The drawbacks of using a higher quantity of chemical or synthetic fertilizers are environmental pollution, persistent changes in the soil ecology, physiochemical composition, decreasing agricultural productivity and cause several health hazards. Climatic factors are responsible for enhancing abiotic stress on crops, resulting in reduced agricultural productivity. There are various types of abiotic and biotic stress factors like soil salinity, drought, wind, improper temperature, heavy metals, waterlogging, and different weeds and phytopathogens like bacteria, viruses, fungi, and nematodes which attack plants, reducing crop productivity and quality. There is a shift toward the use of biofertilizers due to all these facts, which provide nutrition through natural processes like zinc, potassium and phosphorus solubilization, nitrogen fixation, production of hormones, siderophore, various hydrolytic enzymes and protect the plant from different plant pathogens and stress conditions. They provide the nutrition in adequate amount that is sufficient for healthy crop development to fulfill the demand of the increasing population worldwide, eco-friendly and economically convenient. This review will focus on biofertilizers and their mechanisms of action, role in crop productivity and in biotic/abiotic stress tolerance.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Shivani Singh
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Anuj Chaudhary
- School of Agriculture and Environmental Science, Shobhit University, Gangoh, India
| | - Anita Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Govind Kumar
- Department of Crop Production, Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
11
|
Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MDC, Santoyo G, Loeza-Lara PD. Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops. Microorganisms 2022; 10:150. [PMID: 35056599 PMCID: PMC8781547 DOI: 10.3390/microorganisms10010150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.
Collapse
Affiliation(s)
- Rafael Jiménez-Mejía
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ricardo I. Medina-Estrada
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Santos Carballar-Hernández
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58030, Mexico;
| | - Pedro D. Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| |
Collapse
|