1
|
Ramasamy M, Rajkumar MS, Bedre R, Irigoyen S, Berg‐Falloure K, Kolomiets MV, Mandadi KK. Genome editing of NPR3 confers potato resistance to Candidatus Liberibacter spp. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2635-2637. [PMID: 38773935 PMCID: PMC11331773 DOI: 10.1111/pbi.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024]
Affiliation(s)
| | | | - Renesh Bedre
- Texas A&M AgriLife Research and Extension CenterWeslacoTexasUSA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension CenterWeslacoTexasUSA
| | | | - Michael V. Kolomiets
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension CenterWeslacoTexasUSA
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Institute for Advancing Health Through AgricultureTexas A&M AgriLifeCollege StationTexasUSA
| |
Collapse
|
2
|
Singh Rajkumar M, Ibanez-Carrasco F, Avila CA, Mandadi KK. Insights into Bactericera cockerelli and Candidatus Liberibacter solanacearum interaction: a tissue-specific transcriptomic approach. FRONTIERS IN PLANT SCIENCE 2024; 15:1393994. [PMID: 39280947 PMCID: PMC11392735 DOI: 10.3389/fpls.2024.1393994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
The tomato-potato psyllid, Bactericera cockerelli (Šulc), belonging to the Hemiptera order, is an insect pest of solanaceous crops and vectors a fastidious bacterium, Candidatus Liberibacter solanacearum (CLso), the presumptive causal agent of zebra chip and vein greening diseases in potatoes and tomatoes, respectively. The genome of B. cockerelli has been sequenced recently, providing new avenues to elucidate mechanistic insights into pathogenesis in vegetable crops. In this study, we performed RNA-sequencing of the critical psyllid organs (salivary glands and ovaries) involved in CLso pathology and transmission to host plants. Transcriptome analysis revealed differentially expressed genes and organ-specific enrichment of gene ontology (GO) terms related to metabolic processes, response to stress/stimulus, phagocytosis, proteolysis, endocytosis, and provided candidate genes encoding transcription factors (TFs). To examine gene regulatory networks across the psyllid organs under CLso(-) and CLso(+) conditions, we performed weighted gene co-expression network analysis (WGCNA), and unique modules differentiating the psyllid organs were identified. A comparative GO analysis of the unique gene modules revealed functional terms enriched in response to stress, gene regulation, and cell division processes in the ovaries. In contrast, respiration, transport, and neuronal transmission-related GO terms were enriched in the salivary glands. Altogether, this study reveals new insights into tissue-specific expression of the psyllid organs in the absence or presence of CLso bacterium. This knowledge can be leveraged to develop new pest and disease management strategies by delineating the regulatory networks involved in the psyllid-CLso interaction.
Collapse
Affiliation(s)
| | - Freddy Ibanez-Carrasco
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, United States
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
3
|
Thakre N, Carver M, Paredes-Montero JR, Mondal M, Hu J, Saberi E, Ponvert N, Qureshi JA, Brown JK. UV-LASER adjuvant-surfactant-facilitated delivery of mobile dsRNA to tomato plant vasculature and evidence of biological activity by gene knockdown in the potato psyllid. PEST MANAGEMENT SCIENCE 2024; 80:2141-2153. [PMID: 38146104 DOI: 10.1002/ps.7952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Double-stranded RNA (dsRNA) biopesticides are of interest for the abatement of insect vectors of pathogenic bacteria such as 'Candidatus Liberibacter', which infects both its psyllid and plant hosts. Silencing of genes essential for psyllids, or for Liberibacter, is anticipated to lead to mortality or impeded bacterial multiplication. Foliar delivery is preferred for biopesticide application; however, the cuticle impedes dsRNA penetration into the vasculature. Here, conditions were established for wounding tomato leaves using ultraviolet light amplification by stimulated emissions of radiation (UV-LASER) to promote dsRNA penetration into leaves and vasculature. RESULTS UV-LASER treatment with application of select adjuvants/surfactants resulted in vascular delivery of 100-, 300- and 600-bp dsRNAs that, in general, were correlated with size. The 100-bp dsRNA required no pretreatment, whereas 300- and 600-bp dsRNAs entered the vasculature after UV-LASER treatment only and UV-LASER adjuvant/surfactant treatment, respectively. Of six adjuvant/surfactants evaluated, plant-derived oil combined with an anionic organosilicon compound performed most optimally. Localization of dsRNAs in the tomato vasculature was documented using fluorometry and fluorescence confocal microscopy. The biological activity of in planta-delivered dsRNA (200-250 bp) was determined by feeding third-instar psyllids on tomato leaves post UV-LASER adjuvant/surfactant treatment, with or without psyllid cdc42- and gelsolin dsRNAs. Gene knockdown was quantified by quantitative, real-time polymerase chain reaction with reverse transcription (RT-qPCR) amplification. At 10 days post the ingestion-access period, knockdown of cdc42 and gelsolin expression was 61% and 56%, respectively, indicating that the dsRNAs delivered to the tomato vasculature were mobile and biologically active. CONCLUSION Results indicated that UV-LASER adjuvant/surfactant treatments facilitated the delivery of mobile, biologically active dsRNA molecules to the plant vasculature. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Thakre
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jiahuai Hu
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Esmaeil Saberi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Stuehler DS, Hunter WB, Carrillo-Tarazona Y, Espitia H, Cicero JM, Bell T, Mann HR, Clarke SKV, Paris TM, Metz JL, D'Elia T, Qureshi JA, Cano LM. Wild lime psyllid Leuronota fagarae Burckhardt (Hemiptera: Psylloidea) picorna-like virus full genome annotation and classification. J Invertebr Pathol 2023; 201:107995. [PMID: 37748676 DOI: 10.1016/j.jip.2023.107995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Picorna-like viruses of the order Picornavirales are a poorly defined group of positive-sense, single-stranded RNA viruses that include numerous pathogens known to infect plants, animals, and insects. A new picorna-like viral species was isolated from the wild lime psyllid (WLP), Leuronota fagarae, in the state of Florida, USA, and labelled: Leuronota fagarae picorna-like virus isolate FL (LfPLV-FL). The virus was found to have homology to a picorna-like virus identified in the Asian Citrus Psyllid (ACP), Diaphorina citri, collected in the state of Florida. Computational analysis of RNA extracts from WLP adult heads identified a 10,006-nucleotide sequence encoding a 2,942 amino acid polyprotein with similar functional domain structure to polyproteins of both Dicistroviridae and Iflaviridae. Sequence comparisons of nucleic acid and amino acid translations of the conserved RNA-dependent RNA polymerase, along with the entire N-terminal nonstructural coding region, provided insight into an evolutionary relationship of LfPLV-FL to insect-infecting iflaviruses. Viruses belonging to the family Iflaviridae encode a polyprotein of around 3000 amino acids in length that is processed post-translationally to produce components necessary for replication. The classification of a novel picorna-like virus in L. fagarae, with evolutionary characteristics similar to picorna-like viruses infecting Bactericera cockerelli and D. citri, provides an opportunity to examine virus host specificity, as well as identify critical components of the virus' genome required for successful transmission, infection, and replication. This bioinformatic classification allows for further insight into a novel virus species, and aids in the research of a closely related virus of the invasive psyllid, D. citri, a major pest of Floridian citriculture. The potential use of viral pathogens as expression vectors to manage the spread D. citri is an area that requires additional research; however, it may bring forth an effective control strategy to reduce the transmission of Candidatus Liberibacter asiaticus (CLas), the causative agent of Huanglongbing (HLB).
Collapse
Affiliation(s)
- Douglas S Stuehler
- ORISE Participant, DOE/USDA, ARS, Fort Pierce, FL 34945, USA; USDA, ARS, 2001 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Wayne B Hunter
- USDA, ARS, 2001 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Yisel Carrillo-Tarazona
- University of Florida, IFAS, Department of Plant Pathology, Indian River Research and Education Center, Fort Pierce, FL 34945, USA.
| | - Hector Espitia
- University of Florida, IFAS, Department of Plant Pathology, Indian River Research and Education Center, Fort Pierce, FL 34945, USA.
| | - Joseph M Cicero
- University of Florida, IFAS, Department of Plant Pathology, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Tracey Bell
- Indian River State College, Fort Pierce, FL 34949, USA.
| | - Hannah R Mann
- Indian River State College, Fort Pierce, FL 34949, USA
| | | | - Thomson M Paris
- ORISE Participant, DOE/USDA, ARS, Fort Pierce, FL 34945, USA; USDA, ARS, 2001 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Jackie L Metz
- University of Florida, IFAS, Department of Plant Pathology, Indian River Research and Education Center, Fort Pierce, FL 34945, USA.
| | - Tom D'Elia
- Department of Biology, Indian River State College, Fort Pierce, FL 34949, USA.
| | - Jawwad A Qureshi
- University of Florida, Southwest Florida Research and Education Center (SWFREC), 2685 SR 29 North Immokalee, FL 34142, USA.
| | - Liliana M Cano
- University of Florida, IFAS, Department of Plant Pathology, Indian River Research and Education Center, Fort Pierce, FL 34945, USA.
| |
Collapse
|
5
|
Fang ZQ, Liao YC, Lee S, Yang MM, Chu CC. Infection patterns of 'Candidatus Liberibacter europaeus' in Cacopsylla oluanpiensis, a psyllid pest of Pittosporum pentandrum. J Invertebr Pathol 2023; 200:107959. [PMID: 37392992 DOI: 10.1016/j.jip.2023.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
'Candidatus Liberibacter' is a genus of plant-associated bacteria that can be transmitted by insects of the superfamily Psylloidea. Since many members of this genus are putative causal agents of plant diseases, it is crucial in studying their interactions with the psyllid vectors. However, previous studies have mainly focused on few species associated with diseases of economic significance, and this may potentially hinder the development of a more comprehensive understanding of the ecology of 'Ca. Liberibacter'. The present study showed that an endemic psyllid species in Taiwan, Cacopsylla oluanpiensis, is infected with a species of 'Ca. Liberibacter'. The bacterium was present in geographically distant populations of the psyllid and was identified as 'Ca. Liberibacter europaeus' (CLeu), a species which generally does not induce plant symptoms. Analysis of CLeu infection densities in male and female C. oluanpiensis with different abdominal colors using quantitative polymerase chain reaction revealed that CLeu infection was not significantly associated with psyllid gender and body color. Instead, CLeu infection had a negative effect on the body sizes of both male and female psyllids, which is influenced by bacterial titer. Investigation on CLeu's distribution patterns in C. oluanpiensis's host plant Pittosporum pentandrum indicated that CLeu does not behave as a plant pathogen. Also, results showed that nymph-infested twigs had a greater chance of carrying high loads of CLeu, suggesting that ovipositing females and the nymphs are the main source of the bacterium in the plants. This study is not only the first to formally report the presence of CLeu in C. oluanpiensis and plants in the family Pittosporaceae, but also represents the first record of the bacterium in Taiwan. Overall, the findings in this work broaden the understanding of associations between psyllids and 'Ca. Liberibacter' in the field.
Collapse
Affiliation(s)
- Zi-Qing Fang
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan
| | - Yi-Chang Liao
- Department of Entomology, University of California, 165 Entomology Building, Citrus Drive, Riverside, CA, USA
| | - Shin Lee
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan
| | - Man-Miao Yang
- Department of Entomology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan.
| | - Chia-Ching Chu
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan.
| |
Collapse
|
6
|
Li Y, Tan Z, Wang X, Hou L. Metabolic changes and potential biomarkers in " Candidatus Liberibacter solanacearum"-infected potato psyllids: implications for psyllid-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1204305. [PMID: 37538064 PMCID: PMC10394617 DOI: 10.3389/fpls.2023.1204305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Psyllid yellows, vein-greening (VG), and zebra chip (ZC) diseases, which are primarily transmitted by potato psyllid (PoP) carrying Candidatus Liberibacter solanacearum (CLso), have caused significant losses in solanaceous crop production worldwide. Pathogens interact with their vectors at the organic and cellular levels, while the potential changes that may occur at the biochemical level are less well reported. In this study, the impact of CLso on the metabolism of PoP and the identification of biomarkers from infected psyllids were examined. Using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis, metabolomic changes in CLso-infected psyllids were compared to uninfected ones. A total of 34 metabolites were identified as potential biomarkers of CLso infection, which were primarily related to amino acid, carbohydrate, and lipid metabolism. The significant increase in glycerophospholipids is thought to be associated with CLso evading the insect vector's immune defense. Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) was used to map the spatial distribution of these biomarkers, revealing that 15-keto-Prostaglandin E2 and alpha-D-Glucose were highly expressed in the abdomen of uninfected psyllids but down-regulated in infected psyllids. It is speculated that this down-regulation may be due to CLso evading surveillance by immune suppression in the PoP midgut. Overall, valuable biochemical information was provided, a theoretical basis for a better understanding of psyllid-pathogen interactions was offered, and the findings may aid in breaking the transmission cycle of these diseases.
Collapse
Affiliation(s)
- Yelin Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou University, Guangzhou, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
7
|
Batarseh TN, Batarseh SN, Morales-Cruz A, Gaut BS. Comparative genomics of the Liberibacter genus reveals widespread diversity in genomic content and positive selection history. Front Microbiol 2023; 14:1206094. [PMID: 37434713 PMCID: PMC10330825 DOI: 10.3389/fmicb.2023.1206094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
'Candidatus Liberibacter' is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set of Liberibacter genome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the 'Ca. Liberibacter solanacearum' species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in the Liberibacter genus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the 'Ca. L. capsica' species based on high values of dN.
Collapse
Affiliation(s)
| | - Sarah N. Batarseh
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Abraham Morales-Cruz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Jiang J, Feindel W, Swisher Grimm K, Harding M, Feindel D, Bajema S, Feng J. Development of a Loop-Mediated Isothermal Amplification (LAMP) Method to Detect the Potato Zebra Chip Pathogen ' Candidatus Liberibacter solanacearum' (Lso) and Differentiate Haplotypes A and B. PLANT DISEASE 2023:PDIS09222258SR. [PMID: 36480736 DOI: 10.1094/pdis-09-22-2258-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is the causal agent of zebra chip of potato (Solanum tuberosum), which can significantly reduce potato yield. In this study, a loop-mediated isothermal amplification (LAMP) method for the detection of Lso haplotypes A and B was developed and evaluated. Two sets of LAMP primers named LAMP-A and LAMP-B were designed and tested for specificity and sensitivity. Both LAMP-A and LAMP-B were specific to Lso in in silico analysis using the Primer-Blast tool. The LAMP-A and LAMP-B could only produce positive signals from DNA mixtures of Lso-infected tomato but not from the genomic DNA of 37 nontarget plant pathogens. The sensitivity of LAMP-A and LAMP-B on Lso haplotypes A and B were tested on gBlocks and genomic DNA from Lso-infected tomato. On the genomic DNA for LAMP-A, the lowest amount of template DNA for a positive LAMP reaction was 2 to 20 ng on four haplotype A strains and 20 to 80 ng on four haplotype B strains; for LAMP-B, the lowest amount of template DNA for a positive LAMP reaction was 0.02 to 2 ng on four haplotype B strains and 20 ng to no amplification on four haplotype A strains. On gBlocks for LAMP-A, the lowest number of copies for a positive LAMP reaction was 60 on haplotype A and 600 on haplotype B; for LAMP-B, the lowest number of copies for a positive LAMP reaction was 60 on haplotype B and 600 on haplotype A. Therefore, considering the convenience of the LAMP technique, as well as the high specificity and sensitivity, the LAMP-A and LAMP-B primers can be used together to test the probable Lso-infected plant or psyllid samples to rapidly, accurately, and directly differentiate haplotypes A and B. We highly recommend this LAMP system to plant pathology practitioners and diagnostic labs for routine detection of Lso and confirmation of zebra chip disease on potato or tomato.
Collapse
Affiliation(s)
- Junye Jiang
- Potato Growers of Alberta, Edmonton, AB T5Y 6H3, Canada
- Alberta Plant Health Lab, Alberta Agriculture, Forestry, and Rural Economic Development (AAFRED), Edmonton, AB T5Y 6H3, Canada
| | - Will Feindel
- Potato Growers of Alberta, Edmonton, AB T5Y 6H3, Canada
- Alberta Plant Health Lab, Alberta Agriculture, Forestry, and Rural Economic Development (AAFRED), Edmonton, AB T5Y 6H3, Canada
| | - Kylie Swisher Grimm
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, Prosser, WA 99350, U.S.A
| | - Michael Harding
- Crop Diversification Centre South, AAFRED, Brooks, AB T1R 1E6, Canada
| | - David Feindel
- Alberta Plant Health Lab, Alberta Agriculture, Forestry, and Rural Economic Development (AAFRED), Edmonton, AB T5Y 6H3, Canada
| | - Stacey Bajema
- Potato Growers of Alberta, Edmonton, AB T5Y 6H3, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Alberta Agriculture, Forestry, and Rural Economic Development (AAFRED), Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
9
|
Maruyama J, Inoue H, Hirose Y, Nakabachi A. 16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium. Microbes Environ 2023; 38:ME23045. [PMID: 37612118 PMCID: PMC10522848 DOI: 10.1264/jsme2.me23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.
Collapse
Affiliation(s)
- Junnosuke Maruyama
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
- Research Institute for Technological Science and Innovation, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
10
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
11
|
Mora V, Ramasamy M, Damaj MB, Irigoyen S, Ancona V, Avila CA, Vales MI, Ibanez F, Mandadi KK. Identification and Characterization of Potato Zebra Chip Resistance Among Wild Solanum Species. Front Microbiol 2022; 13:857493. [PMID: 35966647 PMCID: PMC9363700 DOI: 10.3389/fmicb.2022.857493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Potato zebra chip (ZC) disease, associated with the uncultured phloem-limited bacterium, Candidatus Liberibacter solanacearum (CLso), is transmitted by the potato psyllid Bactericera cockerelli. Potato ZC disease poses a significant threat to potato production worldwide. Current management practices mainly rely on the control of the psyllid to limit the spread of CLso. The present study investigated new sources of ZC resistance among wild Solanum species. A taxonomically diverse collection of tuber-bearing Solanum species was screened; one ZC-resistant accession and three ZC-tolerant accessions were identified among the 52 screened accessions. Further characterization of the resistant accession showed that the resistance was primarily associated with antibiosis effects due to differences in leaf trichome density and morphology of the wild accession, which could limit the psyllid feeding and oviposition. This germplasm offers a good resource for further understanding ZC and psyllid resistance mechanisms, contributing to potato breeding efforts to develop ZC resistance cultivars. Alternatively, it could be used as a potential trap crop to manage psyllid and control ZC disease.
Collapse
Affiliation(s)
- Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B. Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Carlos A. Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maria Isabel Vales
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Freddy Ibanez
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, United States
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, United States
- *Correspondence: Kranthi K. Mandadi
| |
Collapse
|
12
|
Pierson EA, Cubero J, Roper C, Brown JK, Bock CH, Wang N. ' Candidatus Liberibacter' Pathosystems at the Forefront of Agricultural and Biological Research Challenges. PHYTOPATHOLOGY 2022; 112:7-10. [PMID: 35100014 DOI: 10.1094/phyto-12-21-0497-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133
| | - Jaime Cubero
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid 28040, Spain
| | - Caroline Roper
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721
| | - Clive H Bock
- United States Department of Agriculture, Agriculture Research Service, Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
13
|
Nakabachi A, Inoue H, Hirose Y. High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O. Microbes Environ 2022; 37:ME22078. [PMID: 36476840 PMCID: PMC9763047 DOI: 10.1264/jsme2.me22078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution ana-lyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen "Ca. Liberibacter europaeus" (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan, Corresponding author. E-mail: ; Tel: +81–532–44–6901
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|