1
|
Ndiaye A, Coulombe K, Fliss I, Filteau M. High-throughput ecological interaction mapping of dairy microorganisms. Int J Food Microbiol 2025; 427:110965. [PMID: 39522360 DOI: 10.1016/j.ijfoodmicro.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
To engineer efficient microbial management strategies in the food industry, a comprehensive understanding of microbial interactions is crucial. Microorganisms live in communities where they influence each other in several ways. Although much attention has been paid to the production of antagonistic metabolites in lactic acid bacteria (LAB), research that accounts for the complexity of their ecological interactions and their dynamics remains limited. This study explores binary interactions within a mock community of 94 strains, including 23 LAB from culture collections and 71 isolated from dairy products. Using a colony-picking robot and image analysis, bidirectional interactions were measured at high throughput on solid media, where one test strain was challenged against other mock community members as the target strains. Assays of 15 test strains (14 LAB and one yeast) yielded 1,142 bidirectionally mapped interactions, classified by ecological type over seven days. The results showed variation in the strength, directionality, and type of interactions depending on the origin of the target strains. Cooperation rates increased for strains isolated from raw milk to pasteurized milk and cheese, while exploitation was more common in raw milk strains. Cooperating strains also exhibited more similar ecological behaviors than competing strains, suggesting the presence of microbial cliques. Interestingly, Lactococcus cremoris ATCC 19257 developed pink-red pigmentation when co-cultured with Pseudomonas aeruginosa. Overall, these findings present an unprecedented exploratory data set that significantly improves our understanding of microbial interactions at the system level, with potential applications in strain selection for food processes such as fermentation, bioprotection, and probiotics.
Collapse
Affiliation(s)
- Amadou Ndiaye
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Karl Coulombe
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
| | - Ismail Fliss
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Li C, Han Y, Zou X, Zhang X, Ran Q, Dong C. A systematic discussion and comparison of the construction methods of synthetic microbial community. Synth Syst Biotechnol 2024; 9:775-783. [PMID: 39021362 PMCID: PMC11253132 DOI: 10.1016/j.synbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Synthetic microbial community has widely concerned in the fields of agriculture, food and environment over the past few years. However, there is little consensus on the method to synthetic microbial community from construction to functional verification. Here, we review the concept, characteristics, history and applications of synthetic microbial community, summarizing several methods for synthetic microbial community construction, such as isolation culture, core microbiome mining, automated design, and gene editing. In addition, we also systematically summarized the design concepts, technological thresholds, and applicable scenarios of various construction methods, and highlighted their advantages and limitations. Ultimately, this review provides four efficient, detailed, easy-to-understand and -follow steps for synthetic microbial community construction, with major implications for agricultural practices, food production, and environmental governance.
Collapse
Affiliation(s)
- Chenglong Li
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueqian Zhang
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qingsong Ran
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
3
|
Gupta G, Labrie S, Filteau M. Systematic Evaluation of Biotic and Abiotic Factors in Antifungal Microorganism Screening. Microorganisms 2024; 12:1396. [PMID: 39065164 PMCID: PMC11279232 DOI: 10.3390/microorganisms12071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Microorganisms have significant potential to control fungal contamination in various foods. However, the identification of strains that exhibit robust antifungal activity poses challenges due to highly context-dependent responses. Therefore, to fully exploit the potential of isolates as antifungal agents, it is crucial to systematically evaluate them in a variety of biotic and abiotic contexts. Here, we present an adaptable and scalable method using a robotic platform to study the properties of 1022 isolates obtained from maple sap. We tested the antifungal activity of isolates alone or in pairs on M17 + lactose (LM17), plate count agar (PCA), and sucrose-allantoin (SALN) culture media against Kluyveromyces lactis, Candida boidinii, and Saccharomyces cerevisiae. Microorganisms exhibited less often antifungal activity on SALN and PCA than LM17, suggesting that the latter is a better screening medium. We also analyzed the results of ecological interactions between pairs. Isolates that showed consistent competitive behaviors were more likely to show antifungal activity than expected by chance. However, co-culture rarely improved antifungal activity. In fact, an interaction-mediated suppression of activity was more prevalent in our dataset. These findings highlight the importance of incorporating both biotic and abiotic factors into systematic screening designs for the bioprospection of microorganisms with environmentally robust antifungal activity.
Collapse
Affiliation(s)
- Gunjan Gupta
- Département des Sciences des Aliments, Université Laval, Quebec City, QC G1V 0A6, Canada; (G.G.); (S.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve Labrie
- Département des Sciences des Aliments, Université Laval, Quebec City, QC G1V 0A6, Canada; (G.G.); (S.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Quebec City, QC G1V 0A6, Canada
| | - Marie Filteau
- Département des Sciences des Aliments, Université Laval, Quebec City, QC G1V 0A6, Canada; (G.G.); (S.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Srinivasan S, Jnana A, Murali TS. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions. MICROBIAL ECOLOGY 2024; 87:56. [PMID: 38587642 PMCID: PMC11001700 DOI: 10.1007/s00248-024-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Microbial interactions function as a fundamental unit in complex ecosystems. By characterizing the type of interaction (positive, negative, neutral) occurring in these dynamic systems, one can begin to unravel the role played by the microbial species. Towards this, various methods have been developed to decipher the function of the microbial communities. The current review focuses on the various qualitative and quantitative methods that currently exist to study microbial interactions. Qualitative methods such as co-culturing experiments are visualized using microscopy-based techniques and are combined with data obtained from multi-omics technologies (metagenomics, metabolomics, metatranscriptomics). Quantitative methods include the construction of networks and network inference, computational models, and development of synthetic microbial consortia. These methods provide a valuable clue on various roles played by interacting partners, as well as possible solutions to overcome pathogenic microbes that can cause life-threatening infections in susceptible hosts. Studying the microbial interactions will further our understanding of complex less-studied ecosystems and enable design of effective frameworks for treatment of infectious diseases.
Collapse
Affiliation(s)
- Shanchana Srinivasan
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
5
|
Ndiaye A, Fliss I, Filteau M. High-throughput characterization of the effect of sodium chloride and potassium chloride on 31 lactic acid bacteria and their co-cultures. Front Microbiol 2024; 15:1328416. [PMID: 38435689 PMCID: PMC10904479 DOI: 10.3389/fmicb.2024.1328416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Salt (NaCl) is associated with a risk of hypertension and the development of coronary heart disease, so its consumption should be limited. However, salt plays a key role in the quality and safety of food by controlling undesirable microorganisms. Since studies have focused primarily on the effect of salts on the overall counts of the lactic acid bacteria (LAB) group, we have not yet understood how salt stress individually affects the strains and the interactions between them. In this study, we characterized the effect of sodium chloride (NaCl) and potassium chloride (KCl) on the growth and acidification of 31 LAB strains. In addition, we evaluated the effect of salts on a total of 93 random pairwise strain combinations. Strains and co-cultures were tested at 3% NaCl, 5% NaCl, and 3% KCl on solid medium using an automated approach and image analysis. The results showed that the growth of LAB was significantly reduced by up to 68% at 5% NaCl (p < 0.0001). For the co-cultures, a reduction of up to 57% was observed at 5% NaCl (p < 0.0001). However, acidification was less affected by salt stress, whether for monocultures or co-cultures. Furthermore, KCl had a lesser impact on both growth and acidification compared to NaCl. Indeed, some strains showed a significant increase in growth at 3% KCl, such as Lactococcus lactis subsp. lactis 74310 (23%, p = 0.01). More importantly, co-cultures appeared to be more resilient and had more varied responses to salt stress than the monocultures, as several cases of suppression of the significant effect of salts on acidification and growth were detected. Our results highlight that while salts can modulate microbial interactions, these latter can also attenuate the effect of salts on LAB.
Collapse
Affiliation(s)
- Amadou Ndiaye
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Ismail Fliss
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Picot A, Shibasaki S, Meacock OJ, Mitri S. Microbial interactions in theory and practice: when are measurements compatible with models? Curr Opin Microbiol 2023; 75:102354. [PMID: 37421708 DOI: 10.1016/j.mib.2023.102354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Most predictive models of ecosystem dynamics are based on interactions between organisms: their influence on each other's growth and death. We review here how theoretical approaches are used to extract interaction measurements from experimental data in microbiology, particularly focusing on the generalised Lotka-Volterra (gLV) framework. Though widely used, we argue that the gLV model should be avoided for estimating interactions in batch culture - the most common, simplest and cheapest in vitro approach to culturing microbes. Fortunately, alternative approaches offer a way out of this conundrum. Firstly, on the experimental side, alternatives such as the serial-transfer and chemostat systems more closely match the theoretical assumptions of the gLV model. Secondly, on the theoretical side, explicit organism-environment interaction models can be used to study the dynamics of batch-culture systems. We hope that our recommendations will increase the tractability of microbial model systems for experimentalists and theoreticians alike.
Collapse
Affiliation(s)
- Aurore Picot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France; Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Shota Shibasaki
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA; Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Oliver J Meacock
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, Wagner AS, Chen JG, Muchero W, Reynolds TB, Jacobson D, Lebeis SL. Plant myo-inositol transport influences bacterial colonization phenotypes. Curr Biol 2023; 33:3111-3124.e5. [PMID: 37419115 DOI: 10.1016/j.cub.2023.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Plant microbiomes are assembled and modified through a complex milieu of biotic and abiotic factors. Despite dynamic and fluctuating contributing variables, specific host metabolites are consistently identified as important mediators of microbial interactions. We combine information from a large-scale metatranscriptomic dataset from natural poplar trees and experimental genetic manipulation assays in seedlings of the model plant Arabidopsis thaliana to converge on a conserved role for transport of the plant metabolite myo-inositol in mediating host-microbe interactions. While microbial catabolism of this compound has been linked to increased host colonization, we identify bacterial phenotypes that occur in both catabolism-dependent and -independent manners, suggesting that myo-inositol may additionally serve as a eukaryotic-derived signaling molecule to modulate microbial activities. Our data suggest host control of this compound and resulting microbial behavior are important mechanisms at play surrounding the host metabolite myo-inositol.
Collapse
Affiliation(s)
- Bridget S O'Banion
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Piet Jones
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander A Demetros
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Brittni R Kelley
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leah H Knoor
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew S Wagner
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah L Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 38824, USA.
| |
Collapse
|
8
|
Abstract
Despite an ever-growing number of data sets that catalog and characterize interactions between microbes in different environments and conditions, many of these data are neither easily accessible nor intercompatible. These limitations present a major challenge to microbiome research by hindering the streamlined drawing of inferences across studies. Here, we propose guiding principles to make microbial interaction data more findable, accessible, interoperable, and reusable (FAIR). We outline specific use cases for interaction data that span the diverse space of microbiome research, and discuss the untapped potential for new insights that can be fulfilled through broader integration of microbial interaction data. These include, among others, the design of intercompatible synthetic communities for environmental, industrial, or medical applications, and the inference of novel interactions from disparate studies. Lastly, we envision potential trajectories for the deployment of FAIR microbial interaction data based on existing resources, reporting standards, and current momentum within the community.
Collapse
Affiliation(s)
| | - Charlie Pauvert
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Dileep Kishore
- Bioinformatics Program and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program and Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Department of Biomedical Engineering, Department of Physics, Boston University, Boston Massachusetts, USA
| |
Collapse
|