1
|
Elhaj Baddar Z, Bier R, Spencer B, Xu X. Microbial Community Changes across Time and Space in a Constructed Wetland. ACS ENVIRONMENTAL AU 2024; 4:307-316. [PMID: 39582758 PMCID: PMC11583098 DOI: 10.1021/acsenvironau.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 11/26/2024]
Abstract
Constructed wetlands are artificial ecosystems designed to replicate natural wetland processes. Microbial communities play a pivotal role in cycling essential elements, particularly sulfur, which is crucial for trace metal fixation and remobilization in these ecosystems. By their response to their environment, microbial communities act as biological indicators of the wetland performance. To address knowledge gaps pertinent to the changes in trace metal bioavailability in relation to microbial activities in the H-02 constructed wetland, we performed this study to investigate temporal and spatial variations in microbial communities by using molecular biology tools. Quantitative polymerase chain reaction and next generation sequencing techniques were employed to analyze archaeal and bacterial groups associated with sulfur and methane cycling. Alpha diversity indices were used to assess species richness, evenness, and dominance. Results indicated high gene abundance of Desulfuromonas (5.37 × 106 g.cell-1), methane oxidizing bacteria (6.92 × 106 g.cell-1), and methanogenic microorganisms (3.02 × 105 g.cell-1) during cool months. Warm months were marked by sulfate reducing bacteria dominance (3.31 × 106 g.cell-1), potentially due to competitive interactions and environmental conditions, higher temperatures, and lower redox potential. Spatial variability among microbial groups was insignificant, but trends in gene abundance indicated complex factors influencing these groups. Next generation sequencing data demonstrated Firmicutes as the most abundant phylum with over 50% regardless of the season or sampling location. Cool months exhibited higher alpha diversity than warm months. Overall, this study showed that seasonal changes significantly impacted the microbial communities in the H-02 constructed wetland that are associated with the sulfur cycle and eventually trace metal biogeochemistry, revealing two distinct mechanisms of the sulfur cycle between the two main seasons, whereas spatial variability effects were not conclusive.
Collapse
Affiliation(s)
- Zeinah Elhaj Baddar
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
| | - Raven Bier
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
| | - Breann Spencer
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
| | - Xiaoyu Xu
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
- Warnell
School of Forestry and Natural Resources, University of Georgia, University of Georgia, Athens, Georgia 30605, United States
| |
Collapse
|
2
|
Hellal MS, El-Kamah HM, Doma HS. High-performance internal circulation anaerobic granular sludge reactor for cattle slaughterhouse wastewater treatment and simultaneous biogas production. BMC Biotechnol 2024; 24:29. [PMID: 38720285 PMCID: PMC11080252 DOI: 10.1186/s12896-024-00849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.
Collapse
Affiliation(s)
- Mohamed Saad Hellal
- Water Pollution Research Department, National Research Centre, 33 El Behooth St, Dokki, Cairo, P.O. Box 12622, Egypt.
| | - Hala M El-Kamah
- Water Pollution Research Department, National Research Centre, 33 El Behooth St, Dokki, Cairo, P.O. Box 12622, Egypt
| | - Hala Salah Doma
- Water Pollution Research Department, National Research Centre, 33 El Behooth St, Dokki, Cairo, P.O. Box 12622, Egypt
| |
Collapse
|
3
|
Mekwichai P, Chutivisut P, Tuntiwiwattanapun N. Enhancing biogas production from palm oil mill effluent through the synergistic application of surfactants and iron supplements. Heliyon 2024; 10:e29617. [PMID: 38660277 PMCID: PMC11040070 DOI: 10.1016/j.heliyon.2024.e29617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, the effects of various surfactants on the soluble chemical oxygen demand (COD) fraction and biogas production from palm oil mill effluent (POME) were investigated. A cationic surfactant (cetyltrimethylammonium bromide, CTAB) and a nonionic surfactant (Tween 80; TW80) were found to adsorb onto the particulate matter from POME, markedly reducing the soluble COD, unlike an anionic surfactant (sodium dodecyl sulfate, SDS). The mechanism underlying this phenomenon might be the adsolubilization of oil on particulate matter induced by the adsorbed surfactants. In terms of biogas production, 0.1 % w/v SDS and CTAB dramatically reduced the biogas yield, while 0.1 % w/v TW80 did not have this negative effect. A synergistic effect was observed when TW80 (0.1 % w/v) was combined with FeSO4 (400 mg/L), resulting in a 17 % greater biogas yield than that achieved with treatments using TW80 or FeSO4 alone. Moreover, the combination of TW80 and FeSO4 increased the biogas production rate. Surprisingly, the water-soluble iron fraction remained consistent across all treatments, suggesting that the adsorption of TW80 on particulate matter may limit micelle formation. Importantly, the proportion of methane in the generated biogas remained stable in all the treatments. Microbial community analysis revealed that the introduction of TW80 and FeSO4 had no discernible impact on the microbial community of the system. Pretreatment with TW80 and an iron supplement significantly enhanced biogas production and reduced the retention time of the anaerobic digestion (AD) system while maintaining the biogas quality and microbial community stability.
Collapse
Affiliation(s)
- Pannawee Mekwichai
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
| | - Pokchat Chutivisut
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
| | - Nattapong Tuntiwiwattanapun
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
- Hub of Waste Management for Sustainable Development, Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Eliani-Russak E, Tik Z, Uzi-Gavrilov S, Meijler MM, Sivan O. The reduction of environmentally abundant iron oxides by the methanogen Methanosarcina barkeri. Front Microbiol 2023; 14:1197299. [PMID: 37547683 PMCID: PMC10399698 DOI: 10.3389/fmicb.2023.1197299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Microbial dissimilatory iron reduction is a fundamental respiratory process that began early in evolution and is performed in diverse habitats including aquatic anoxic sediments. In many of these sediments microbial iron reduction is not only observed in its classical upper zone, but also in the methane production zone, where low-reactive iron oxide minerals are present. Previous studies in aquatic sediments have shown the potential role of the archaeal methanogen Methanosarcinales in this reduction process, and their use of methanophenazines was suggested as an advantage in reducing iron over other iron-reducing bacteria. Here we tested the capability of the methanogenic archaeon Methanosarcina barkeri to reduce three naturally abundant iron oxides in the methanogenic zone: the low-reactive iron minerals hematite and magnetite, and the high-reactive amorphous iron oxide. We also examined the potential role of their methanophenazines in promoting the reduction. Pure cultures were grown close to natural conditions existing in the methanogenic zone (under nitrogen atmosphere, N2:CO2, 80:20), in the presence of these iron oxides and different electron shuttles. Iron reduction by M. barkeri was observed in all iron oxide types within 10 days. The reduction during that time was most notable for amorphous iron, then magnetite, and finally hematite. Importantly, the reduction of iron inhibited archaeal methane production. When hematite was added inside cryogenic vials, thereby preventing direct contact with M. barkeri, no iron reduction was observed, and methanogenesis was not inhibited. This suggests a potential role of methanophenazines, which are strongly associated with the membrane, in transferring electrons from the cell to the minerals. Indeed, adding dissolved phenazines as electron shuttles to the media with iron oxides increased iron reduction and inhibited methanogenesis almost completely. When M. barkeri was incubated with hematite and the phenazines together, there was a change in the amounts (but not the type) of specific metabolites, indicating a difference in the ratio of metabolic pathways. Taken together, the results show the potential role of methanogens in reducing naturally abundant iron minerals in methanogenic sediments under natural energy and substrate limitations and shed new insights into the coupling of microbial iron reduction and the important greenhouse gas methane.
Collapse
Affiliation(s)
- Efrat Eliani-Russak
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Zohar Tik
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shaked Uzi-Gavrilov
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael M. Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
5
|
Aeppli M, Schladow G, Lezama Pacheco JS, Fendorf S. Iron Reduction in Profundal Sediments of Ultraoligotrophic Lake Tahoe under Oxygen-Limited Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1529-1537. [PMID: 36633549 DOI: 10.1021/acs.est.2c05714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increased periods of bottom water anoxia in deep temperate lakes due to decreasing frequency and depth of water column mixing in a warming climate may result in the reductive dissolution of iron minerals and increased flux of nutrients from the sediment into the water column. Here, we assessed the sediment properties and reactivities under depleted oxygen concentrations of Lake Tahoe, a deep ultraoligotrophic lake in the Sierra Nevada mountain range. Using whole-core incubation experiments, we found that a decrease in dissolved oxygen concentration in the top 2 cm of the sediment resulted in an extension of the microbial iron reduction zone from below 4.5 to below 1.5 cm depth. Concentrations of reactive iron generally decreased with sediment depth, and microbial iron reduction seemingly ceased as concentrations of Fe(II) approximated concentrations of reactive iron. These findings suggest that microorganisms preferentially utilized reactive iron and/or iron minerals became less reactive due to mineral transformation and surface passivation. The estimated release of iron mineral-associated phosphorus is not expected to change Lake Tahoe's trophic state but will likely contribute to increased phytoplankton productivity if mixed into surface waters.
Collapse
Affiliation(s)
- Meret Aeppli
- Department of Earth System Science, Stanford University, Stanford, California94305, United States
- School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Vaud1015, Switzerland
| | - Geoffrey Schladow
- Department of Civil and Environmental Engineering, UC Davis, Davis, California95616, United States
- UC Davis Tahoe Environmental Research Center, Incline Village, Nevada89451, United States
| | - Juan S Lezama Pacheco
- Department of Earth System Science, Stanford University, Stanford, California94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California94305, United States
| |
Collapse
|