1
|
Tan Y, Zhao K, Yang S, Chen S, Li C, Han X, Li J, Hu K, Liu S, Ma M, Yu X, Zou L. Insights into antibiotic and heavy metal resistance interactions in Escherichia coli isolated from livestock manure and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119935. [PMID: 38154221 DOI: 10.1016/j.jenvman.2023.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Heavy metal and antibiotic-resistant bacteria from livestock feces are ecological and public health problems. However, the distribution and relationships of antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs), and virulence factors (VFs) and their transmission mechanisms remain unclear. Therefore, we investigated the resistance of Escherichia coli, the prevalence of its ARGs, HMRGs, and VFs, and their transmission mechanisms in livestock fresh feces (FF), composted feces (CF), and fertilized soil (FS). In total, 99.54% (n = 221) and 91.44% (n = 203) of E. coli were resistant to at least one antibiotic and one heavy metal, respectively. Additionally, 72.52% (n = 161) were multi-drug resistant (MDR), of which Cu-resistant E. coli accounted for 72.67% (117/161). More than 99.34% (88/89) of E. coli carried multidrug ARGs, VFs, and the Cu resistance genes cueO and cusABCRFS. The Cu resistance genes cueO and cusABCRFS were mainly located on chromosomes, and cueO and cusF were positively associated with HMRGs, ARGs, and VFs. The Cu resistance genes pcoABCDRS were located on the plasmid pLKYL-P02 flanked by ARGs in PF18C from FF group and on chromosomes flanked by HMRGs in SAXZ1-1 from FS group. These results improved our understanding of bacterial multidrug and heavy metal resistance in the environment.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Chun Li
- Sichuan Province Center for Animal Disease Prevention and Control, Chengdu, Sichuan, China.
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Lithgo RM, Hanževački M, Harris G, Kamps JJAG, Holden E, Gianga TM, Benesch JLP, Jäger CM, Croft AK, Hussain R, Hobman JL, Orville AM, Quigley A, Carr SB, Scott DJ. The adaptability of the ion-binding site by the Ag(I)/Cu(I) periplasmic chaperone SilF. J Biol Chem 2023; 299:105331. [PMID: 37820867 PMCID: PMC10656224 DOI: 10.1016/j.jbc.2023.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.
Collapse
Affiliation(s)
- Ryan M Lithgo
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom; Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Jos J A G Kamps
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Ellie Holden
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Tiberiu-Marius Gianga
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, United Kingdom; Department of Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Anna K Croft
- Department of Chemical Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Rohannah Hussain
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Jon L Hobman
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom
| | - Allen M Orville
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - David J Scott
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
3
|
Browning DF, Hobman JL, Busby SJW. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Microb Genom 2023; 9:mgen000922. [PMID: 36745549 PMCID: PMC9997739 DOI: 10.1099/mgen.0.000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli K-12 was originally isolated 100 years ago and since then it has become an invaluable model organism and a cornerstone of molecular biology research. However, despite its pedigree, since its initial isolation E. coli K-12 has been repeatedly cultured, passaged and mutagenized, resulting in an organism that carries many genetic changes. To understand more about this important model organism, we have sequenced the genomes of two ancestral K-12 strains, WG1 and EMG2, considered to be the progenitors of many key laboratory strains. Our analysis confirms that these strains still carry genetic elements such as bacteriophage lambda (λ) and the F plasmid, but also indicates that they have undergone extensive laboratory-based evolution. Thus, scrutinizing the genomes of ancestral E. coli K-12 strains leads us to examine whether E. coli K-12 is a sufficiently robust model organism for 21st century microbiology.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Ares-Arroyo M, Coluzzi C, P.C. Rocha E. Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res 2022; 51:3001-3016. [PMID: 36442505 PMCID: PMC10123127 DOI: 10.1093/nar/gkac1079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract
Plasmids can be transferred between cells by conjugation, thereby driving bacterial evolution by horizontal gene transfer. Yet, we ignore the molecular mechanisms of transfer for many plasmids because they lack all protein-coding genes required for conjugation. We solved this conundrum by identifying hundreds of plasmids and chromosomes with conjugative origins of transfer in Escherichia coli and Staphylococcus aureus. These plasmids (pOriT) hijack the relaxases of conjugative or mobilizable elements, but not both. The functional dependencies between pOriT and other plasmids explain their co-occurrence: pOriT are abundant in cells with many plasmids, whereas conjugative plasmids are the most common in the others. We systematically characterized plasmid mobility in relation to conjugation and alternative mechanisms of transfer and can now propose a putative mechanism of transfer for ∼90% of them. In most cases, plasmid mobility seems to involve conjugation. Interestingly, the mechanisms of mobility are important determinants of plasmid-encoded accessory traits, since pOriTs have the highest densities of antimicrobial resistance genes, whereas plasmids lacking putative mechanisms of transfer have the lowest. We illuminate the evolutionary relationships between plasmids and suggest that many pOriT may have arisen by gene deletions in other types of plasmids. These results suggest that most plasmids can be transferred by conjugation.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Institut Pasteur, Université de Paris Cité , CNRS UMR3525, Microbial Evolutionary Genomics, Paris , France
| | - Charles Coluzzi
- Institut Pasteur, Université de Paris Cité , CNRS UMR3525, Microbial Evolutionary Genomics, Paris , France
| | - Eduardo P.C. Rocha
- Institut Pasteur, Université de Paris Cité , CNRS UMR3525, Microbial Evolutionary Genomics, Paris , France
| |
Collapse
|
5
|
Baker M, Williams AD, Hooton SPT, Helliwell R, King E, Dodsworth T, María Baena-Nogueras R, Warry A, Ortori CA, Todman H, Gray-Hammerton CJ, Pritchard ACW, Iles E, Cook R, Emes RD, Jones MA, Kypraios T, West H, Barrett DA, Ramsden SJ, Gomes RL, Hudson C, Millard AD, Raman S, Morris C, Dodd CER, Kreft JU, Hobman JL, Stekel DJ. Antimicrobial resistance in dairy slurry tanks: A critical point for measurement and control. ENVIRONMENT INTERNATIONAL 2022; 169:107516. [PMID: 36122459 DOI: 10.1016/j.envint.2022.107516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.
Collapse
Affiliation(s)
- Michelle Baker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Alexander D Williams
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Steven P T Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; (a)Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Richard Helliwell
- School of Sociology and Social Policy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; Ruralis, University Centre Dragvoll, N-7491 Trondheim, Norway
| | - Elizabeth King
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Thomas Dodsworth
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; ResChem Analytical Ltd, 8 Jubilee Parkway, Jubilee Business Park, Stores Road, Derby DE21 4BJ, UK
| | - Rosa María Baena-Nogueras
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Andrew Warry
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Catherine A Ortori
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Henry Todman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; School of Mathematical Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Charlotte J Gray-Hammerton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alexander C W Pritchard
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Ethan Iles
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Theodore Kypraios
- School of Mathematical Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Stephen J Ramsden
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Chris Hudson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Andrew D Millard
- (a)Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Sujatha Raman
- School of Sociology and Social Policy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; Centre for Public Awareness of Science, Australian National University, Linnaeus Way, Acton ACT 2601, Canberra, Australia
| | - Carol Morris
- School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Christine E R Dodd
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Jan-Ulrich Kreft
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
6
|
Whole genome sequence of Salmonella Rissen SCSW714, a porcine strain harbouring a novel multidrug-resistant Tn7-like pco- and sil-containing transposon. J Glob Antimicrob Resist 2022; 29:307-309. [DOI: 10.1016/j.jgar.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022] Open
|
7
|
Wang H, Li J, Min C, Xia F, Tang M, Li J, Hu Y, Zou M. Characterization of Silver Resistance and Coexistence of sil Operon with Antibiotic Resistance Genes Among Gram-Negative Pathogens Isolated from Wound Samples by Using Whole-Genome Sequencing. Infect Drug Resist 2022; 15:1425-1437. [PMID: 35392367 PMCID: PMC8982571 DOI: 10.2147/idr.s358730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Haichen Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Jia Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Changhang Min
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Fengjun Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Mengli Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Jun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Yongmei Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Mingxiang Zou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Correspondence: Mingxiang Zou, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, People’s Republic of China, Tel/Fax +86 7384327440, Email
| |
Collapse
|
8
|
Brkljacic J, Wittler B, Lindsey BE, Ganeshan VD, Sovic MG, Niehaus J, Ajibola W, Bachle SM, Fehér T, Somers DE. Frequency, composition and mobility of Escherichia coli-derived transposable elements in holdings of plasmid repositories. Microb Biotechnol 2022; 15:455-468. [PMID: 34875147 PMCID: PMC8867978 DOI: 10.1111/1751-7915.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
By providing the scientific community with uniform and standardized resources of consistent quality, plasmid repositories play an important role in enabling scientific reproducibility. Plasmids containing insertion sequence elements (IS elements) represent a challenge from this perspective, as they can change the plasmid structure and function. In this study, we conducted a systematic analysis of a subset of plasmid stocks distributed by plasmid repositories (The Arabidopsis Biological Resource Center and Addgene) which carry unintended integrations of bacterial mobile genetic elements. The integration of insertion sequences was most often found in, but not limited to, pBR322-derived vectors, and did not affect the function of the specific plasmids. In certain cases, the entire stock was affected, but the majority of the stocks tested contained a mixture of the wild-type and the mutated plasmids, suggesting that the acquisition of IS elements likely occurred after the plasmids were acquired by the repositories. However, comparison of the sequencing results of the original samples revealed that some plasmids already carried insertion mutations at the time of donation. While an extensive BLAST analysis of 47 877 plasmids sequenced from the Addgene repository uncovered IS elements in only 1.12%, suggesting that IS contamination is not widespread, further tests showed that plasmid integration of IS elements can propagate in conventional Escherichia coli hosts over a few tens of generations. Use of IS-free E. coli hosts prevented the emergence of IS insertions as well as that of small indels, suggesting that the use of IS-free hosts by donors and repositories could help limit unexpected and unwanted IS integrations into plasmids.
Collapse
Affiliation(s)
| | - Bettina Wittler
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Present address:
Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | - Michael G. Sovic
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
| | | | - Walliyulahi Ajibola
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
- Doctoral School in BiologyUniversity of SzegedSzegedHungary
| | | | - Tamás Fehér
- Systems and Synthetic Biology UnitInstitute of BiochemistryBiological Research Centre of the Eötvös Lóránd Research NetworkSzegedHungary
| | - David E. Somers
- Arabidopsis Biological Resource CenterColumbusOHUSA
- Center For Applied Plant SciencesThe Ohio State UniversityColumbusOHUSA
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|