1
|
Rappaport HB, Senewiratne NPJ, Lucas SK, Wolfe BE, Oliverio AM. Genomics and synthetic community experiments uncover the key metabolic roles of acetic acid bacteria in sourdough starter microbiomes. mSystems 2024; 9:e0053724. [PMID: 39287380 PMCID: PMC11498085 DOI: 10.1128/msystems.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
While research on the sourdough microbiome has primarily focused on lactic acid bacteria (LAB) and yeast, recent studies have found that acetic acid bacteria (AAB) are also common members. However, the ecology, genomic diversity, and functional contributions of AAB in sourdough remain unknown. To address this gap, we sequenced 29 AAB genomes, including three that represent putatively novel species, from a collection of over 500 sourdough starters surveyed globally from community scientists. We found variations in metabolic traits related to carbohydrate utilization, nitrogen metabolism, and alcohol production, as well as in genes related to mobile elements and defense mechanisms. Sourdough AAB genomes did not cluster when compared to AAB isolated from other environments, although a subset of gene functions was enriched in sourdough isolates. The lack of a sourdough-specific genomic cluster may reflect the nomadic lifestyle of AAB. To assess the consequences of AAB on the emergent function of sourdough starter microbiomes, we constructed synthetic starter microbiomes, varying only the AAB strain included. All AAB strains increased the acidification of synthetic sourdough starters relative to yeast and LAB by 18.5% on average. Different strains of AAB had distinct effects on the profile of synthetic starter volatiles. Taken together, our results begin to define the ways in which AAB shape emergent properties of sourdough and suggest that differences in gene content resulting from intraspecies diversification can have community-wide consequences on emergent function. IMPORTANCE This study is a comprehensive genomic and ecological survey of acetic acid bacteria (AAB) isolated from sourdough starters. By combining comparative genomics with manipulative experiments using synthetic microbiomes, we demonstrate that even strains with >97% average nucleotide identity can shift important microbiome functions, underscoring the importance of species and strain diversity in microbial systems. We also demonstrate the utility of sourdough starters as a model system to understand the consequences of genomic diversity at the strain and species level on multispecies communities. These results are also relevant to industrial and home-bakers as we uncover the importance of AAB in shaping properties of sourdough starters that have direct impacts on sensory notes and the quality of sourdough bread.
Collapse
Affiliation(s)
- H. B. Rappaport
- Department of Biology,
Syracuse University,
Syracuse, New York, USA
| | | | - Sarah K. Lucas
- Department of Biology,
Syracuse University,
Syracuse, New York, USA
| | - Benjamin E. Wolfe
- Department of Biology,
Tufts University, Medford,
Massachusetts, USA
| | | |
Collapse
|
2
|
Sariñana-Núñez PH, Rivas-Arreola MJ, Rocha-Guzmán NE, Moreno-Jiménez MR, González-Herrera SM, Álvarez SA, Rutiaga-Quiñones JG, Velázquez-Quiñones SE. Techno-functional aspects of kombucha analogs formulated from mulberry coproducts. Food Chem 2024; 451:139439. [PMID: 38692239 DOI: 10.1016/j.foodchem.2024.139439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
This study investigated the techno-functional conditions for producing fermented beverages using the kombucha artisanal consortium (kAC) while implementing sustainable strategies. According to the circular economy principles, the study focused on mulberry coproducts (MC) generated as agro-industrial waste during mulberry fruit production. The presence of target microorganisms in the beverage and biofilm was recorded to determine the MC content necessary for establishing kAC. Additionally, the physicochemical characteristics, carbohydrate and polyphenol profiles were analyzed to understand their impact on antioxidant activity and sensory responses in the soft drink. Notably, a concentration of 0.25% MC was found to yield fermented soft drinks rich in probiotic populations and displaying nutraceutical qualities that enhance antioxidant activity and sensory acceptability. This study offers valuable technical guidance for repurposing mulberry pruning coproducts in the creation of novel products.
Collapse
Affiliation(s)
- Pedro Hassiel Sariñana-Núñez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México/ I.T. de Durango, Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., México
| | - María José Rivas-Arreola
- Universidad Iberoamericana de Puebla. Blvd del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, Centro Comercial Puebla, C.P. 72810, San Andrés Cholula, Pue., México
| | - Nuria Elizabeth Rocha-Guzmán
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México/ I.T. de Durango, Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., México.
| | - Martha Rocío Moreno-Jiménez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México/ I.T. de Durango, Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., México.
| | - Silvia Marina González-Herrera
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México/ I.T. de Durango, Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., México
| | - Saúl Alberto Álvarez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México/ I.T. de Durango, Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., México
| | - José Guadalupe Rutiaga-Quiñones
- Facultad de Ingeniería en Tecnología de la Madera, Edificio D, Ciudad Universitaria, Universidad Michoacana de San Nicolás de Hidalgo, Av. Fco. J. Múgica S/N. Col. Felicitas de Río, C.P. 58040, Morelia, Mich., México
| | - Sahian Enitze Velázquez-Quiñones
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México/ I.T. de Durango, Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., México
| |
Collapse
|
3
|
Michielsen S, Vercelli GT, Cordero OX, Bachmann H. Spatially structured microbial consortia and their role in food fermentations. Curr Opin Biotechnol 2024; 87:103102. [PMID: 38461750 DOI: 10.1016/j.copbio.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Microbial consortia are important for the fermentation of foods. They bring combined functionalities to the fermented product, but stability and product consistency of fermentations with complex consortia can be hard to control. Some of these consortia, such as water- and milk-kefir and kombucha, grow as multispecies aggregates or biofilms, in which micro-organisms taking part in a fermentation cascade are spatially organized. The spatial organization of micro-organisms in these aggregates can impact what metabolic interactions are realized in the consortia, ultimately affecting the growth dynamics and evolution of microbes. A better understanding of such spatially structured communities is of interest from the perspective of microbial ecology and biotechnology, as multispecies aggregates can be used to valorize energy-rich substrates, such as plant-based substrates or side streams from the food industry.
Collapse
Affiliation(s)
- Sabine Michielsen
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Gabriel T Vercelli
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Herwig Bachmann
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands.
| |
Collapse
|
4
|
Daval C, Tran T, Verdier F, Martin A, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Identification of Key Parameters Inducing Microbial Modulation during Backslopped Kombucha Fermentation. Foods 2024; 13:1181. [PMID: 38672854 PMCID: PMC11049054 DOI: 10.3390/foods13081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the impact of production parameters on the reproducibility of kombucha fermentation over several production cycles based on backslopping. Six conditions with varying oxygen accessibility (specific interface surface) and initial acidity (through the inoculation rate) of the cultures were carried out and compared to an original kombucha consortium and a synthetic consortium assembled from yeasts and bacteria isolated from the original culture. Output parameters monitored were microbial populations, biofilm weight, key physico-chemical parameters and metabolites. Results highlighted the existence of phases in microbial dynamics as backslopping cycles progressed. The transitions between phases occurred faster for the synthetic consortium compared to the original kombucha. This led to microbial dynamics and fermentative kinetics that were reproducible over several cycles but that could also deviate and shift abruptly to different behaviors. These changes were mainly induced by an increase in the Saccharomyces cerevisiae population, associated with an intensification of sucrose hydrolysis, sugar consumption and an increase in ethanol content, without any significant acceleration in the rate of acidification. The study suggests that the reproducibility of kombucha fermentations relies on high biodiversity to slow down the modulations of microbial dynamics induced by the sustained rhythm of backslopping cycles.
Collapse
Affiliation(s)
- Claire Daval
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Thierry Tran
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | | | - Antoine Martin
- Biomère, 10B Rue du Nouveau Bêle, 44470 Carquefou, France
| | - Hervé Alexandre
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Cosette Grandvalet
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| |
Collapse
|
5
|
Cubas ALV, Provin AP, Dutra ARA, Mouro C, Gouveia IC. Advances in the Production of Biomaterials through Kombucha Using Food Waste: Concepts, Challenges, and Potential. Polymers (Basel) 2023; 15:polym15071701. [PMID: 37050315 PMCID: PMC10096571 DOI: 10.3390/polym15071701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
In recent years, several researchers have focused their studies on the development of sustainable biomaterials using renewable sources, including the incorporation of living biological systems. One of the best biomaterials is bacterial cellulose (BC). There are several ways to produce BC, from using a pure strain to producing the fermented drink kombucha, which has a symbiotic culture of bacteria and yeasts (SCOBY). Studies have shown that the use of agricultural waste can be a low-cost and sustainable way to create BC. This article conducts a literature review to analyze issues related to the creation of BC through kombucha production. The databases used were ScienceDirect, Scopus, Web of Science, and SpringerLink. A total of 42 articles, dated from 2018 to 2022, were referenced to write this review. The findings contributed to the discussion of three topics: (1) The production of BC through food waste (including patents in addition to the scientific literature); (2) Areas of research, sectors, and products that use BC (including research that did not use the kombucha drink, but used food waste as a source of carbon and nitrogen); and (3) Production, sustainability, and circular economy: perspectives, challenges, and trends in the use of BC (including some advantages and disadvantages of BC production through the kombucha drink).
Collapse
Affiliation(s)
- Anelise Leal Vieira Cubas
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 80137270, SC, Brazil
| | - Ana Paula Provin
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 80137270, SC, Brazil
| | - Ana Regina Aguiar Dutra
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 80137270, SC, Brazil
| | - Cláudia Mouro
- FibEnTech R&D—Fiber Materials and Environmental Technologies, University of Beira Interior, Rua Marquês d’Avila e Bolama, 6201-001 Covilhã, Portugal
| | - Isabel C. Gouveia
- FibEnTech R&D—Fiber Materials and Environmental Technologies, University of Beira Interior, Rua Marquês d’Avila e Bolama, 6201-001 Covilhã, Portugal
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
6
|
Liu Y, Zhong D, Yu L, Shi Y, Xu Y. Primary Amine Functionalized Carbon Dots for Dead and Alive Bacterial Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:437. [PMID: 36770398 PMCID: PMC9920602 DOI: 10.3390/nano13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Small molecular dyes are commonly used for bacterial imaging, but they still meet a bottleneck of biological toxicity and fluorescence photobleaching. Carbon dots have shown high potential for bio-imaging due to their low cost and negligible toxicity and anti-photobleaching. However, there is still large space to enhance the quantum yield of the carbon quantum dots and to clarify their mechanisms of bacterial imaging. Using carbon dots for dyeing alive bacteria is difficult because of the thick density and complicated structure of bacterial cell walls. In this work, both dead or alive bacterial cell imaging can be achieved using the primary amine functionalized carbon dots based on their small size, excellent quantum yield and primary amine functional groups. Four types of carbon quantum dots were prepared and estimated for the bacterial imaging. It was found that the spermine as one of precursors can obviously enhance the quantum yield of carbon dots, which showed a high quantum yield of 66.46% and high fluorescence bleaching-resistance (70% can be maintained upon 3-h-irradiation). Furthermore, a mild modifying method was employed to bound ethylenediamine on the surface of the spermine-carbon dots, which is favorable for staining not only the dead bacterial cells but also the alive ones. Investigations of physical structure and chemical groups indicated the existence of primary amine groups on the surface of spermine-carbon quantum dots (which own a much higher quantum yield) which can stain alive bacterial cells visibly. The imaging mechanism was studied in detail, which provides a preliminary reference for exploring efficient and environment-friendly carbon dots for bacterial imaging.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao 266000, China
| | - Lei Yu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Tran T, Verdier F, Martin A, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Oxygen management during kombucha production: Roles of the matrix, microbial activity, and process parameters. Food Microbiol 2022; 105:104024. [DOI: 10.1016/j.fm.2022.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
|
8
|
Tran T, Roullier-Gall C, Verdier F, Martin A, Schmitt-Kopplin P, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Microbial Interactions in Kombucha through the Lens of Metabolomics. Metabolites 2022; 12:235. [PMID: 35323678 PMCID: PMC8954749 DOI: 10.3390/metabo12030235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Kombucha is a fermented beverage obtained through the activity of a complex microbial community of yeasts and bacteria. Exo-metabolomes of kombucha microorganisms were analyzed using FT-ICR-MS to investigate their interactions. A simplified set of microorganisms including two yeasts (Brettanomyces bruxellensis and Hanseniaspora valbyensis) and one acetic acid bacterium (Acetobacter indonesiensis) was used to investigate yeast-yeast and yeast-acetic acid bacterium interactions. A yeast-yeast interaction was characterized by the release and consumption of fatty acids and peptides, possibly in relationship to commensalism. A yeast-acetic acid bacterium interaction was different depending on yeast species. With B. bruxellensis, fatty acids and peptides were mainly produced along with consumption of sucrose, fatty acids and polysaccharides. In opposition, the presence of H. valbyensis induced mainly the decrease of polyphenols, peptides, fatty acids, phenolic acids and putative isopropyl malate and phenylpyruvate and few formulae have been produced. With all three microorganisms, the formulae involved with the yeast-yeast interactions were consumed or not produced in the presence of A. indonesiensis. The impact of the yeasts' presence on A. indonesiensis was consistent regardless of the yeast species with a commensal consumption of compounds associated to the acetic acid bacterium by yeasts. In detail, hydroxystearate from yeasts and dehydroquinate from A. indonesiensis were potentially consumed in all cases of yeast(s)-acetic acid bacterium pairing, highlighting mutualistic behavior.
Collapse
Affiliation(s)
- Thierry Tran
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | | | - Antoine Martin
- Biomère, 14 rue Audubon, 75120 Paris, France; (F.V.); (A.M.)
| | - Philippe Schmitt-Kopplin
- Comprehensive Foodomics Platform, Technische Universität München, 85354 Freising, Germany;
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | - Cosette Grandvalet
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| |
Collapse
|
9
|
Mas P, Tran T, Verdier F, Martin A, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Evolution in Composition of Kombucha Consortia over Three Consecutive Years in Production Context. Foods 2022; 11:foods11040614. [PMID: 35206089 PMCID: PMC8871122 DOI: 10.3390/foods11040614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
Kombucha is a traditional drink obtained from sugared tea that is transformed by a community of yeasts and bacteria. Its production has become industrialized, and the study of the microbial community's evolution is needed to improve control over the process. This study followed the microbial composition of black and green kombucha tea over three consecutive years in a production facility using a culture-dependent method. Microorganisms were isolated and cultivated using selective agar media. The DNA of isolates was extracted, amplified using 26S and 16S PCR, and sequenced. Identities were obtained after a comparison to the NCBI database. Dekkera/Brettanomyces bruxellensis, Hanseniaspora valbyensis and Saccharomyces cerevisiae were the major yeast species, and the major bacterial genera were Acetobacter and Liquorilactobacillus. Results highlight the persistence of yeast species such as B. bruxellensis detected in 2019. Some yeasts species appeared to be sensitive towards stressful events, such as a hot period in 2019. However, they were resilient and isolated again in 2021, as was the case for H. valbyensis. Dominance of B. bruxellensis was clear in green and black tea kombucha, but proportions in yeasts varied depending on tea type and phase (liquid or biofilm). Composition in acetic acid and lactic acid bacteria showed a higher variability than yeasts with many changes in species over time.
Collapse
Affiliation(s)
- Perrine Mas
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-organismes Stress (VAlMiS), 21000 Dijon, France; (P.M.); (H.A.); (C.G.); (R.T.-M.)
| | - Thierry Tran
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-organismes Stress (VAlMiS), 21000 Dijon, France; (P.M.); (H.A.); (C.G.); (R.T.-M.)
- Correspondence:
| | | | - Antoine Martin
- Biomère, 14 rue Audubon, 75120 Paris, France; (F.V.); (A.M.)
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-organismes Stress (VAlMiS), 21000 Dijon, France; (P.M.); (H.A.); (C.G.); (R.T.-M.)
| | - Cosette Grandvalet
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-organismes Stress (VAlMiS), 21000 Dijon, France; (P.M.); (H.A.); (C.G.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-organismes Stress (VAlMiS), 21000 Dijon, France; (P.M.); (H.A.); (C.G.); (R.T.-M.)
| |
Collapse
|
10
|
Abstract
Kombucha is a carbonated, slightly acidic beverage traditionally produced by the fermentation of sweetened tea by a symbiotic culture of bacteria and yeast (SCOBY). The microbial community of kombucha is a complex one, whose dynamics are still not fully understood; however, the emergence of culture-independent techniques has allowed a more comprehensive insight into kombucha microbiota. In recent times, advancements have been made towards the optimisation of the fermentation process, including the use of alternative substrates, defined starter cultures and the modification of fermentation parameters, with the aim of producing an innovative beverage that is improved in terms of its physiochemical, sensory and bioactive properties. The global kombucha market is rapidly increasing, with the rising popularity of the tea attributed in part to its purported health benefits, despite the lack of research in human subjects to substantiate such claims. Accordingly, the incidence of kombucha home-brewing has increased, meaning there is a requirement for individuals to recognise the potential hazards associated with fermentation and the relevant preventative measures to be undertaken to ensure the safe preparation of kombucha. The aim of this review is to provide an update regarding the current knowledge of kombucha production, microbiology, safety and marketing.
Collapse
|