1
|
Ngolong Ngea GL, Yang Q, Xu M, Ianiri G, Dhanasekaran S, Zhang X, Bi Y, Zhang H. Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next-generation antifungal technologies. Compr Rev Food Sci Food Saf 2024; 23:e13397. [PMID: 38924311 DOI: 10.1111/1541-4337.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, Douala-Bassa, Cameroun
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meiqiu Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhang Y, Zhang N, Gao C, Cheng Y, Guan Y, Wei C, Guan J. The Fungal Diversity and Potential Pathogens Associated with Postharvest Fruit Rot of 'Huangguan' Pear ( Pyrus bretschneideri) in Hebei Province, China. PLANT DISEASE 2024; 108:1382-1390. [PMID: 38115565 DOI: 10.1094/pdis-08-23-1528-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Postharvest fruit rot caused by pathogens is a serious problem in the pear industry. This study investigated the fungal diversity and main pathogens and identified a new pathogen in the stored 'Huangguan' pear (Pyrus bretschneideri Rehd.), the dominant pear variety in northern China. We sampled 20 refrigeration houses from five main producing regions in Hebei Province and used Illumina sequencing technology to detect the fungal composition. Alternaria (56.3%) was the most abundant fungus, followed by Penicillium (9.2%) and Monilinia (6.2%). We also isolated and identified nine strains of Alternaria and four strains of Penicillium. Moreover, we observed a new postharvest fruit disease in 'Huangguan' pear caused by Stemphylium eturmiunum, which was confirmed by phylogenetic analysis by combining the sequences of three conserved genes, including internal transcribed spacer, gapdh, and calmodulin. This study marks the first documentation of S. eturmiunum causing fruit rot in 'Huangguan' pears, offering valuable insights for identifying and controlling this newly identified postharvest disease.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Nan Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Yeqing Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Chuangqi Wei
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
3
|
Shi H, Zhou WH, Xu YY, He XE, He FY, Wang Y. Effect of calcium spray at flowering combined with post-harvest 1-MCP treatment on the preservation of grapes. Heliyon 2023; 9:e19918. [PMID: 37809379 PMCID: PMC10559319 DOI: 10.1016/j.heliyon.2023.e19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
These tests were carried out to find out how calcium and 1-MCP treatment affected the preservation of grapes, as grapes are highly susceptible to decay during post-harvest storage. The grapes were treated with 5 g/L calcium at the flowering stage, followed by 1 μL/L 1-MCP treatment after harvesting. When grapevines were treated with a combination of calcium and 1-MCP, the marketable fruit rate (At day 56 of storage, the 1-MCP + Ca2+ treatment group was still 93%, an increase of 29.03% compared to the control group.) and quality improved (At day 28 of storage, the VC content of the 1-MCP + Ca2+ treated group was 4.35 mg/100g, an increase of 25.01% compared to the control group.), while the fruit weight loss rate decreased (At day 56 of storage, the weight loss of the control group was 6.97%, an increase of 39.43% compared to the 1-MCP + Ca2+ treated group.). According to the experimental results, there are several reasons for this. First, in the early stages of fruit storage, the concentration of soluble pectin and soluble fiber, as well as the activities of pectinase and cellulase (related gene levels) were decreased. Secondly, the activity of antioxidant enzymes was increased, while MDA content was decreased. Third, during fruit storage, the respiratory intensity and ethylene release rate were reduced, as was the activity of energy metabolism enzymes. As a result, the aging and deterioration of the fruit during storage were delayed. Principal component analysis revealed that the calcium and 1-MCP combination therapy slowed the decline in grape berry quality, followed by the calcium-treated and 1-MCP-treated fruits. In contrast, grape berry quality declined the most rapidly in the control group.
Collapse
Affiliation(s)
- Hao Shi
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Wen hua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yin yu Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiao e He
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Fu yin He
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Yun Wang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
4
|
Gao Q, Zhang Y, Gao C, Li H, Cheng Y, Qian X, Zhang L, Liu J, Ogunyemi SO, Guan J. The Microbial Diversity in Relation to Postharvest Quality and Decay: Organic vs. Conventional Pear Fruit. Foods 2023; 12:1980. [PMID: 37238797 PMCID: PMC10217483 DOI: 10.3390/foods12101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Organic food produced in environmentally friendly farming systems has become increasingly popular. (2) Methods: We used a DNA metabarcoding approach to investigate the differences in the microbial community between organic and conventional 'Huangguan' pear fruit; and (3) Results: Compared to a conventional orchard, the fruit firmness in the organic orchard had significantly lowered after 30 days of shelf-life storage at 25 °C, and the soluble solids content (SSC), titratable acid (TA), and decay index were higher. There were differences in the microbial diversity between organic and conventional orchards pears. After 30 days of storage, Fusarium and Starmerella became the main epiphytic fungi in organic fruits, while Meyerozyma was dominant in conventional fruits. Gluconobacter, Acetobacter, and Komagataeibacter were dominant epiphytic bacteria on pears from both organic and conventional orchards after a 30-day storage period. Bacteroides, Muribaculaceae, and Nesterenkonia were the main endophytic bacteria throughout storage. There was a negative correlation between fruit firmness and decay index. Moreover, the abundance of Acetobacter and Starmerella were positively correlated with fruit firmness, while Muribaculaceae was negatively correlated, implying that these three microorganisms may be associated with the postharvest decay of organic fruit; (4) Conclusions: The difference in postharvest quality and decay in organic and conventional fruits could potentially be attributed to the variation in the microbial community during storage.
Collapse
Affiliation(s)
- Qi Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Huimin Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xun Qian
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Lishu Zhang
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jinyu Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310013, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
5
|
Li H, Zhang Y, Gao C, Gao Q, Cheng Y, Zhao M, Guan J. Mycotoxin Production and the Relationship between Microbial Diversity and Mycotoxins in Pyrus bretschneideri Rehd cv. Huangguan Pear. Toxins (Basel) 2022; 14:699. [PMID: 36287968 PMCID: PMC9610726 DOI: 10.3390/toxins14100699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are generated by a series of fungal pathogens in postharvest fruit, resulting in serious health threat to consumers and great economic loss to the fruit storage industry. The microbial differences between rotten and healthy fruit during storage and their relationship with mycotoxin production have not been fully studied. In this study, differences in microbial diversity between rotten and healthy fruit after 30 days of storage at ambient temperature were investigated using high-throughput sequencing technology in 'Huangguan' pear (Pyrus bretschneideri Rehd cv. Huangguan) harvested from five different producing regions of Hebei province, China. The bacterial genus Gluconobacter was much more abundant in rotten fruit (76.24%) than that in healthy fruit (32.36%). In addition, Komagataeibacter and Acetobacter were also relatively higher in abundance in rotten fruit. In contrast, bacterial genera Pantoea, Alistipes, Muribaculaceae, Lactobacillus, and Ruminococcaceae_UCG were found to be more abundant in healthy fruit. Fungal genera including Botryosphaeria, Colletotrichum, Valsa, Alternaria, Rosellinia, Fusarium, and Trichothecium were found to be abundant in rotten fruit. The results of principal coordinate analysis (PCoA) showed that there were significant differences in the microbial diversity of different regions. PAT (patulin) was detected in all rotten fruit samples, while tenuazonic acid (TeA), alternariol (AOH), and alternariolmonomethyl ether (AME) were only detected in samples collected from one region (Weixian). Canonical correlation analysis (CCA) and Pearson correlation analysis showed that the abundance of Alistipes and Pantoea were negatively correlated with the contents of PAT, suggesting that bacterial genera Alistipes and Pantoea have potential in reducing mycotoxin production in 'Huangguan' pear.
Collapse
Affiliation(s)
- Huimin Li
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Qi Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
6
|
Zhimo VY, Kumar A, Biasi A, Abdelfattah A, Sharma VK, Salim S, Feygenberg O, Bartuv R, Freilich S, Whitehead SR, Wisniewski M, Droby S. Assembly and dynamics of the apple carposphere microbiome during fruit development and storage. Front Microbiol 2022; 13:928888. [PMID: 36016781 PMCID: PMC9395710 DOI: 10.3389/fmicb.2022.928888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated with fruit can contribute to quality and pathogen resistance, but little is known about their assembly and dynamics during fruit development and storage. Three apple cultivars growing under the same environmental conditions were utilized to examine the apple carposphere microbiome composition and structure at different developmental stages and storage. There was a significant effect (Adonis, p ≤ 0.001) of fruit genotype and its developmental stages and storage times on the fruit surface microbial assemblage and a strong temporal microbial community succession was detected (Mantel test: R ≤ 0.5, p = 0.001) in both bacterial and fungal communities. A set of 15 bacterial and 35 fungal core successional taxa and members exhibiting differential abundances at different fruit stages were identified. For the first time, we show the existence of underlying universal dynamics in the assembly of fruit-associated microbiomes. We also provide evidence of strong microbial cross-domain associations and uncover potential microbe-microbe correlations in the apple carposphere. Together our findings shed light on how the fruit carposphere assemble and change over time, and provide new insights into fruit microbial ecology.
Collapse
Affiliation(s)
- V. Yeka Zhimo
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ajay Kumar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Antonio Biasi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee, Potsdam, Germany
| | - Vijay Kumar Sharma
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Oleg Feygenberg
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Rotem Bartuv
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishay, Israel
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shiri Freilich
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishay, Israel
| | - Susan R. Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Samir Droby
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- *Correspondence: Samir Droby,
| |
Collapse
|
7
|
The Microbiome of the ‘Williams’ Pear Variety Grown in the Organic Orchard and Antifungal Activity by the Autochthonous Bacterial and Yeast Isolates. Microorganisms 2022; 10:microorganisms10071282. [PMID: 35889000 PMCID: PMC9321879 DOI: 10.3390/microorganisms10071282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
The total diversity of bacterial and fungal communities associated with the phyllosphere (fruits and leaves) of the ‘Williams’ pear variety was analyzed in two phenological stages during fruit development and maturation. The antagonistic potential of autochthonous bacterial and yeast isolates against phytopathogenic fungi was also evaluated. A metabarcoding approach revealed Pantoea, Sphingomonas, Hymenobacter, Massilia, and Pseudomonas as dominant bacterial constituents of the pear phyllosphere, whilst most abundant among the fungal representatives identified were Metschnikowia, Filobasidium, Aureobasidiumpullulans, Botrytis cinerea, and Taphrina. The traditional culturable approach revealed that the Pseudomonas genus with P. graminis, P. putida, and P. congelans was most prevalent. The most frequently cultivated fungal representatives belonged to the genus Fusarium with six identified species. A broad range of the antagonistic activity was detected for the Hannaella luteola and Metschnikowia pulcherrima yeasts, significantly affecting the growth of many fungal isolates in the range of 53–70%. Fusarium sporotrichioides was the most susceptible fungal isolate. The autochthonous antagonistic yeasts H. luteola and M. pulcherrima might be powerful biological control agents of postharvest diseases caused by Fusarium spp. and common pathogens like Monilinia laxa, Botrytis cinerea, Alternaria tenuissima, and Cladosporium cladosporioides.
Collapse
|
8
|
Li X, Peng S, Yu R, Li P, Zhou C, Qu Y, Li H, Luo H, Yu L. Co-Application of 1-MCP and Laser Microporous Plastic Bag Packaging Maintains Postharvest Quality and Extends the Shelf-Life of Honey Peach Fruit. Foods 2022; 11:foods11121733. [PMID: 35741931 PMCID: PMC9222991 DOI: 10.3390/foods11121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Honey peach (Prunus persica L.) is highly nutritious; it is an excellent source of sugars, proteins, amino acids, vitamins, and mineral elements. However, it is a perishable climacteric fruit that is difficult to preserve. In this study, “Feicheng” honey peach fruit was used as a test material to investigate the synergistic preservation effect of 1-methylcyclopropene (1-MCP) and laser microporous film (LMF). The peach fruits were fumigated for 24 h with 2 μL L−1 1-MCP, then packed in LMF. In comparison with the control treatment, 1-MCP + LMF treatment markedly decreased the respiration rate, weight loss, and rot rate of peach fruits. Moreover, the combination of 1-MCP and LMF suppressed the increase in soluble solids (SS) and reducing sugars (RS), as well as the decrease in titratable acid (TA) and ascorbic acid (AsA). The combined application also maintained a high protopectin content and low soluble pectin content; it reduced the accumulation of superoxide anions (O2−) and hydrogen peroxide (H2O2). Except in a few samples, the catalase (CAT) and ascorbate peroxidase (APX) activities were higher when treated by 1-MCP + LMF. Conversely, the phenylalanine deaminase (PAL), peroxidase (POD), lipase, lipoxygenase (LOX), polygalacturonase (PG), β-glucosidase, and cellulase (Cx) activities were lower than in the control. Furthermore, 1-MCP + LMF treatment reduced the relative abundances of dominant pathogenic fungi (e.g., Streptomyces, Stachybotrys, and Issa sp.). The combined treatment improved the relative abundances of antagonistic fungi (e.g., Aureobasidium and Holtermanniella). The results indicated that the co-application of 1-MCP and LMF markedly reduced weight loss and spoilage, delayed the decline of nutritional quality, and inhibited the physiological and biochemical metabolic activities of peach during storage. These changes extended its shelf-life to 28 days at 5 °C. The results provide a reference for the commercial application of this technology.
Collapse
Affiliation(s)
- Xuerui Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Sijia Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Renying Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Puwang Li
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Chuang Zhou
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Yunhui Qu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Hong Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
- Correspondence: (H.L.); (L.Y.)
| | - Lijuan Yu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
- Correspondence: (H.L.); (L.Y.)
| |
Collapse
|
9
|
Leng J, Yu L, Dai Y, Leng Y, Wang C, Chen Z, Wisniewski M, Wu X, Liu J, Sui Y. Recent advances in research on biocontrol of postharvest fungal decay in apples. Crit Rev Food Sci Nutr 2022; 63:10607-10620. [PMID: 35608023 DOI: 10.1080/10408398.2022.2080638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apple is the largest fruit crop produced in temperate regions and is a popular fruit worldwide. It is, however, susceptible to a variety of postharvest fungal pathogens, including Penicillium expansum, Botrytis cinerea, Botryosphaeria dothidea, Monilia spp., and Alternaria spp. Decays resulting from fungal infections severely reduce apple quality and marketable yield. Biological control utilizing bacterial and fungal antagonists is an eco-friendly and effective method of managing postharvest decay in horticultural crops. In the current review, research on the pathogenesis of major decay fungi and isolation of antagonists used to manage postharvest decay in apple is presented. The mode of action of postharvest biocontrol agents (BCAs), including recent molecular and genomic studies, is also discussed. Recent research on the apple microbiome and its relationship to disease management is highlighted, and the use of additives and physical treatments to enhance biocontrol efficacy of BCAs is reviewed. Biological control is a critical component of an integrated management system for the sustainable approaches to apple production. Additional research will be required to explore the feasibility of developing beneficial microbial consortia and novel antimicrobial compounds derived from BCAs for postharvest disease management, as well as genetic approaches, such as the use of CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Jinsong Leng
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Yuan Dai
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xuehong Wu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia Liu
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yuan Sui
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| |
Collapse
|
10
|
Dong Y, Zhi H. Effects of postharvest application of 1‐methylcyclopropene on physiological disorders, crispness characteristic, and antioxidant capacity of “Concorde,” “Comice,” “Bosc,” and “Gem” pears. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yu Dong
- Qinghai Academy of Agriculture and Forestry Sciences Qinghai University Xining China
- Department of Horticulture Oregon State University, Mid‐Columbia Agricultural Research and Extension Center Hood River Oregon USA
| | - Huanhuan Zhi
- Qinghai Academy of Agriculture and Forestry Sciences Qinghai University Xining China
| |
Collapse
|