1
|
Tsakem B, Tchamgoue J, Kinge RT, Tiani GLM, Teponno RB, Kouam SF. Diversity of African fungi, chemical constituents and biological activities. Fitoterapia 2024; 178:106154. [PMID: 39089594 DOI: 10.1016/j.fitote.2024.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Besides plants and animals, the fungal kingdom consists of several species characterized by various forms and applications. Fungi are amazing producers of bioactive natural products with applications in medicine and agriculture. Though this kingdom has been extensively investigated worldwide, it remains relatively underexplored in Africa. To address the knowledge gaps, encourage research interest, and suggest opportunities for the discovery of more bioactive substances from African fungi, we considered it appropriate to extensively review the research work carried out on African fungi since 1988. This review summarizes the diversity and distribution of fungi throughout Africa, the secondary metabolites yet reported from studied fungi, their biological activities and, the countries where they were collected. The studied fungi originated from eleven African countries and were mainly endophytic fungi and higher fungi (macrofungi). Their investigation led to the isolation of five hundred and three (503) compounds with polyketides representing the main class of secondary metabolites. The compounds exhibited varied biological activities with antibacterial and antiproliferative properties being the most prominent.
Collapse
Affiliation(s)
- Bienvenu Tsakem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Rosemary Tonjock Kinge
- Department of Plant Sciences, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Gesqiere Laure M Tiani
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Fundamental Science, University Institute for Wood Technology Mbalmayo, P.O. Box 306, Mbalmayo, Cameroon
| | - Rémy Bertrand Teponno
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
2
|
Zhang T, Feng J, He W, Rong X, Lv H, Li J, Li X, Wang H, Wang L, Zhang L, Yu L. Genomic and Transcriptomic Approaches Provide a Predictive Framework for Sesquiterpenes Biosynthesis in Desarmillaria tabescens CPCC 401429. J Fungi (Basel) 2023; 9:jof9040481. [PMID: 37108935 PMCID: PMC10146329 DOI: 10.3390/jof9040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenoids constitute a structurally diverse class of secondary metabolites with wide applications in the pharmaceutical, fragrance and flavor industries. Desarmillaria tabescens CPCC 401429 is a basidiomycetous mushroom that could produce anti-tumor melleolides. To date, no studies have been conducted to thoroughly investigate the sesquiterpenes biosynthetic potential in Desarmillaria or related genus. This study aims to unravel the phylogeny, terpenome, and functional characterization of unique sesquiterpene biosynthetic genes of the strain CPCC 401429. Herein, we report the genome of the fungus containing 15,145 protein-encoding genes. MLST-based phylogeny and comparative genomic analyses shed light on the precise reclassification of D. tabescens suggesting that it belongs to the genus Desarmillaria. Gene ontology enrichment and pathway analyses uncover the hidden capacity for producing polyketides and terpenoids. Genome mining directed predictive framework reveals a diverse network of sesquiterpene synthases (STSs). Among twelve putative STSs encoded in the genome, six ones are belonging to the novel minor group: diverse Clade IV. In addition, RNA-sequencing based transcriptomic profiling revealed differentially expressed genes (DEGs) of the fungus CPCC 401429 in three different fermentation conditions, that of which enable us to identify noteworthy genes exemplified as STSs coding genes. Among the ten sesquiterpene biosynthetic DEGs, two genes including DtSTS9 and DtSTS10 were selected for functional characterization. Yeast cells expressing DtSTS9 and DtSTS10 could produce diverse sesquiterpene compounds, reinforced that STSs in the group Clade IV might be highly promiscuous producers. This highlights the potential of Desarmillaria in generating novel terpenoids. To summarize, our analyses will facilitate our understanding of phylogeny, STSs diversity and functional significance of Desarmillaria species. These results will encourage the scientific community for further research on uncharacterized STSs of Basidiomycota phylum, biological functions, and potential application of this vast source of secondary metabolites.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianjv Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenni He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoting Rong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinxin Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hao Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Yang H, He K, Cao Y, Li Z, Ji Q, Sun J, Li G, Chen X, Mo H, Du G, Li Q. Comparative transcriptome analysis of Armillaria gallica 012m in response to ethephon treatment. PeerJ 2023; 11:e14714. [PMID: 37056223 PMCID: PMC10088873 DOI: 10.7717/peerj.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background
Gastrodia elata, known as a rootless, leafless, achlorophyllous and fully mycoheterotrophic orchid, needs to establish symbionts with particular Armillaria species to acquire nutrition and energy. Previous research findings had approved that ethylene (ET) played an important role in plant-fungi interaction and some receptors of ET had been discovered in microorganisms. However, the molecular mechanisms underlying the role of ET in the interaction between G. elata and Armillaria species remain unknown.
Methods
Exiguous ethephon (ETH) was added to agar and liquid media to observe the morphological features of mycelium and count the biomass respectively. Mycelium cultured in liquid media with exiguous ETH (0.1 ppm, 2.0 ppm, 5.0 ppm) were chosen to perform whole-transcriptome profiling through the RNA-seq technology (Illumina NGS sequencing). The DEGs of growth-related genes and candidate ET receptor domains were predicted on SMART.
Results
ETH-0.1 ppm and ETH-2 ppm could significantly improve the mycelium growth of A. gallica 012m, while ETH-5 ppm inhibited the mycelium growth in both solid and liquid media. The number of up-regulated or down-regulated genes increased along with the concentrations of ETH. The growth of mycelia might benefit from the up-regulated expression of Pyr_redox (Pyridine nucleotide-disulphide oxidoreductase), GAL4 (C6 zinc finger) and HMG (High Mobility Group) genes in the ETH-0.1 ppm and ETH-2 ppm. Therefore, the growth of mycelia might be impaired by the down-regulated expression of ZnF_C2H2 and ribosomal protein S4 proteins in the ETH-5 ppm. Seven ET receptor domains were predicted in A. gallica 012m. Based on cluster analysis and comparative studies of proteins, the putative ETH receptor domains of A. gallica 012m have a higher homologous correlation with fungi.
Conclusions
The responses of A. gallica 012m to ETH had a concentration effect similar to the plants’ responses to ET. Therefore, the number of up-regulated or down-regulated genes are increased along with the concentrations of ETH. Seven ET receptor protein domains were predicted in the genome and transcriptome of A. gallica 012m. We speculate that ETH receptors exist in A. gallica 012m and ethylene might play an important role in the plant-fungi interaction.
Collapse
Affiliation(s)
- Haiying Yang
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China
| | - Kaixiang He
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China
| | - Yapu Cao
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Qiaolin Ji
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Ganpeng Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Qingqing Li
- Southwest Forestry University, Life Science College, Kunming, Yunnan, China
- Kunming Xianghao Technology Co. Ltd, Kunming, Yunnan, China
| |
Collapse
|
4
|
Cao Y, He K, Li Q, Chen X, Mo H, Li Z, Ji Q, Li G, Du G, Yang H. Transcriptome analysis of Armillaria gallica 012 m in response to auxin. J Basic Microbiol 2023; 63:17-25. [PMID: 36449692 DOI: 10.1002/jobm.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Gastrodia elata is an achlorophyllous and fully mycoheterotrophic orchid which obtains carbon and other nutrients from Armillaria species in its life cycle. Many researchers suggested that plant hormones, as signing molecules, play a central role in the plant-fungi interaction. In the process of Armillaria gallica 012 m cultivation, both exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) distinctly stimulated the growth of mycelia in solid media. The differential expression genes (DEGs) of A. gallica 012 m with IAA versus blank control (BK) and IBA versus BK were investigated. The results showed that more than 80% of DEGs of the IAA group were coincident with the DEGs of the IBA group, and more than half of upregulated DEGs and most of the downregulated DEGs of the IAA group coincided with those DEGs of the IBA group. Above research implied that A. gallica 012 m could perceive IAA and IBA, and possess similar responses and signaling pathways to IAA and IBA. The overlapping differential genes of the IAA group and IBA group were analyzed by GO term, and the results showed that several DEGs identified were related to biological processes including positive regulation of the biological process and biological process. The downregulated NmrA-like and FKBP_C genes might be benefit to the growth of mycelia. Those results can explain that exiguous IAA and IBA improved the growth of A. gallica to some extent. We speculate that IAA and IBA are signaling molecules, and regulate the expression of growth-related genes of A. gallica 012 m by the same signaling pathway.
Collapse
Affiliation(s)
- Yapu Cao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Kaixiang He
- Department of Chemistry, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Qingqing Li
- Life Science College, Southwest Forestry University, Kunming, China.,Kunming Xianghao Technology Co. Ltd., Kunming, China
| | - Xin Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Haiying Mo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Zhihao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Qiaolin Ji
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Haiying Yang
- Department of Chemistry, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| |
Collapse
|
5
|
Yu E, Gao Y, Li Y, Zang P, Zhao Y, He Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria. BMC PLANT BIOLOGY 2022; 22:621. [PMID: 36581798 PMCID: PMC9801631 DOI: 10.1186/s12870-022-04007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gastrodia elata Bl. f. glauca, a perennial herb of G.elata Bl. in Orchidaceae, is one of the most valuable traditional Chinese medicines. G. elata Bl. is a chlorophyll-free myco-heterotrophic plant, which must rely on the symbiotic growth of Armillaria, but not all Armillaria strains can play the symbiotic role. Additionally, Armillaria is easy to degenerate after multiple generations, and the compatibility between the strains from other areas and G. elata Bl. f. glauca in Changbai Mountain is unstable. Therefore, it is incredibly significant to isolate, identify and screen the symbiotic Armillaria suitable for the growth of G. elata Bl. f. glauca in Changbai Mountain, and to explore the mechanism by which Armillaria improves the production performance of G. elata Bl. f. glauca. RESULTS Firstly, G. elata Bl. f. glauca tubers, and rhizomorphs and fruiting bodies of Armillaria were used for the isolation and identification of Armillaria. Five Armillaria isolates were obtained in our laboratory and named: JMG, JMA, JMB, JMC and JMD. Secondly, Armillaria was selected based on the yield and the effective component content of G. elata Bl. f. glauca. It was concluded that the yield and quality of G. elata Bl. f. glauca co-planted with JMG is the highest. Finally, the mechanism of its high quality and yield was explored by investigating the effects of different Armillaria strains on the soil, its nutrition element contents and the soil microbial diversity around G. elata Bl. f. glauca in Changbai Mountain. CONCLUSIONS Compared with commercial strains, JMG significantly increased the content of Na, Al, Si, Mn, Fe, Zn, Rb and the absorption of C, Na, Mg, Ca, Cr, Cu, Zn and Rb in G. elata Bl. f. glauca; it improved the composition, diversity and metabolic functions of soil microbial communities around G. elata Bl. f. glauca at phylum, class and genus levels; it markedly increased the relative abundance of bacteria such as Chthoniobacter and Armillaria in the dominant populations, and enhanced such functions as Cell motility, amino acid metabolism and Lipid metabolism; it dramatically decreased the relative abundance of Bryobacter and other fungi in the dominant populations, and reduced such functions as microbial energy metabolism, translation and carbohydrate metabolism. This is the main reason why excellent Armillaria strains promote the high quality and yield of G. elata Bl. f. glauca in Changbai Mountain.
Collapse
Affiliation(s)
- En Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Yaqi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
6
|
Li H, Xu J, Wang S, Wang P, Rao W, Hou B, Zhang Y. Genetic Differentiation and Widespread Mitochondrial Heteroplasmy among Geographic Populations of the Gourmet Mushroom Thelephora ganbajun from Yunnan, China. Genes (Basel) 2022; 13:genes13050854. [PMID: 35627240 PMCID: PMC9141859 DOI: 10.3390/genes13050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial genomes are generally considered non-recombining and homoplasmic in nature. However, our previous study provided the first evidence of extensive and stable mitochondrial heteroplasmy in natural populations of the basidiomycete fungus Thelephora ganbajun from Yunnan province, China. The heteroplasmy was characterized by the presence of two types of introns residing at adjacent but different sites in the cytochrome oxidase subunits I (cox1) gene within an individual strain. However, the frequencies of these two introns among isolates from different geographical populations and the implications for the genetic structure in natural populations have not been investigated. In this study, we analyzed DNA sequence variation at the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster among 489 specimens from 30 geographic locations from Yunnan and compared that variation with distribution patterns of the two signature introns in the cox1 gene that are indicative of heteroplasmy in this species. In our samples, evidence for gene flow, abundant genetic diversity, and genotypic uniqueness among geographic samples in Yunnan were revealed by ITS sequence variation. While there was insignificant positive correlation between geographic distance and genetic differentiation among the geographic samples based on ITS sequences, a moderate significant correlation was found between ITS sequence variation, geographical distance of sampling sites, and distribution patterns of the two heteroplasmic introns in the cox1 gene. Interestingly, there was a significantly negative correlation between the copy numbers of the two co-existing introns. We discussed the implications of our results for a better understanding of the spread of stable mitochondrial heteroplasmy, mito-nuclear interactions, and conservation of this important gourmet mushroom.
Collapse
Affiliation(s)
- Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Bin Hou
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Correspondence:
| |
Collapse
|
7
|
Liang J, Pecoraro L, Cai L, Yuan Z, Zhao P, Tsui CKM, Zhang Z. Phylogenetic Relationships, Speciation, and Origin of Armillaria in the Northern Hemisphere: A Lesson Based on rRNA and Elongation Factor 1-Alpha. J Fungi (Basel) 2021; 7:1088. [PMID: 34947070 PMCID: PMC8705980 DOI: 10.3390/jof7121088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Armillaria species have a global distribution and play various roles in the natural ecosystems, e.g., pathogens, decomposers, and mycorrhizal associates. However, their taxonomic boundaries, speciation processes, and origin are poorly understood. Here, we used a phylogenetic approach with 358 samplings from Europe, East Asia, and North America to delimit the species boundaries and to discern the evolutionary forces underpinning divergence and evolution. Three species delimitation methods indicated multiple unrecognized phylogenetic species, and biological species recognition did not reflect the natural evolutionary relationships within Armillaria; for instance, biological species of A. mellea and D. tabescens are divergent and cryptic species/lineages exist associated with their geographic distributions in Europe, North America, and East Asia. While the species-rich and divergent Gallica superclade might represent three phylogenetic species (PS I, PS II, and A. nabsnona) that undergo speciation. The PS II contained four lineages with cryptic diversity associated with the geographic distribution. The genus Armillaria likely originated from East Asia around 21.8 Mya in early Miocene when Boreotropical flora (56-33.9 Mya) and the Bering land bridge might have facilitated transcontinental dispersal of Armillaria species. The Gallica superclade arose at 9.1 Mya and the concurrent vicariance events of Bering Strait opening and the uplift of the northern Tibetan plateau might be important factors in driving the lineage divergence.
Collapse
Affiliation(s)
- Junmin Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.P.); (L.C.); (P.Z.); (Z.Z.)
| | - Lorenzo Pecoraro
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.P.); (L.C.); (P.Z.); (Z.Z.)
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.P.); (L.C.); (P.Z.); (Z.Z.)
| | - Zhilin Yuan
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310029, China;
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.P.); (L.C.); (P.Z.); (Z.Z.)
| | - Clement K. M. Tsui
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Department of Pathology, Sidra Medicine, Doha 2713, Qatar
| | - Zhifeng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.P.); (L.C.); (P.Z.); (Z.Z.)
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|