1
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
2
|
Zhang Y, Li X, Zhang S, Ma T, Mao C, Zhang C. Quantitative Loop-Mediated Isothermal Amplification Detection of Ustilaginoidea virens Causing Rice False Smut. Int J Mol Sci 2023; 24:10388. [PMID: 37373534 DOI: 10.3390/ijms241210388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most devastating diseases in rice worldwide, which results in serious reductions in rice quality and yield. As an airborne fungal disease, early diagnosis of rice false smut and monitoring its epidemics and distribution of its pathogens is particularly important to manage the infection. In this study, a quantitative loop-mediated isothermal amplification (q-LAMP) method for U. virens detection and quantification was developed. This method has higher sensitivity and efficiency compared to the quantitative real-time PCR (q-PCR) method. The species-specific primer that the UV-2 set used was designed based on the unique sequence of the U. virens ustiloxins biosynthetic gene (NCBI accession number: BR001221.1). The q-LAMP assay was able to detect a concentration of 6.4 spores/mL at an optimal reaction temperature of 63.4 °C within 60 min. Moreover, the q-LAMP assay could even achieve accurate quantitative detection when there were only nine spores on the tape. A linearized equation for the standard curve, y = -0.2866x + 13.829 (x is the amplification time, the spore number = 100.65y), was established for the detection and quantification of U. virens. In field detection applications, this q-LAMP method is more accurate and sensitive than traditional observation methods. Collectively, this study has established a powerful and simple monitoring tool for U. virens, which provides valuable technical support for the forecast and management of rice false smut, and a theoretical basis for precise fungicide application.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Xinyue Li
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Shuya Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Tianling Ma
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Chengxin Mao
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
3
|
UvKmt2-Mediated H3K4 Trimethylation Is Required for Pathogenicity and Stress Response in Ustilaginoidea virens. J Fungi (Basel) 2022; 8:jof8060553. [PMID: 35736036 PMCID: PMC9225167 DOI: 10.3390/jof8060553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic modification is important for cellular functions. Trimethylation of histone H3 lysine 4 (H3K4me3), which associates with transcriptional activation, is one of the important epigenetic modifications. In this study, the biological functions of UvKmt2-mediated H3K4me3 modification were characterized in Ustilaginoidea virens, which is the causal agent of the false smut disease, one of the most destructive diseases in rice. Phenotypic analyses of the ΔUvkmt2 mutant revealed that UvKMT2 is necessary for growth, conidiation, secondary spore formation, and virulence in U. virens. Immunoblotting and chromatin immunoprecipitation assay followed by sequencing (ChIP-seq) showed that UvKMT2 is required for the establishment of H3K4me3, which covers 1729 genes of the genome in U. virens. Further RNA-seq analysis demonstrated that UvKmt2-mediated H3K4me3 acts as an important role in transcriptional activation. In particular, H3K4me3 modification involves in the transcriptional regulation of conidiation-related and pathogenic genes, including two important mitogen-activated protein kinases UvHOG1 and UvPMK1. The down-regulation of UvHOG1 and UvPMK1 genes may be one of the main reasons for the reduced pathogenicity and stresses adaptability of the ∆Uvkmt2 mutant. Overall, H3K4me3, established by histone methyltransferase UvKMT2, contributes to fungal development, secondary spore formation, virulence, and various stress responses through transcriptional regulation in U. virens.
Collapse
|
4
|
Yu M, Yu J, Cao H, Pan X, Song T, Qi Z, Du Y, Huang S, Liu Y. The Velvet Protein UvVEA Regulates Conidiation and Chlamydospore Formation in Ustilaginoidea virens. J Fungi (Basel) 2022; 8:jof8050479. [PMID: 35628735 PMCID: PMC9148152 DOI: 10.3390/jof8050479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, is a serious disease of rice worldwide, severely reducing the quantity and quality of rice production. The conserved fungal velvet proteins are global regulators of diverse cellular processes. We identified and functionally characterized two velvet genes, UvVEA and UvVELB, in U. virens. The deletion of these genes affected the conidiation of U. virens but had no effect on the virulence of this pathogen. Interestingly, the ΔUvVEA mutants appeared in the form of smaller false smut balls with a reduced number of chlamydospores compared with the wide-type strains. In addition, the deletion of UvVEA affected the expression of some transmembrane transport genes during chlamydospore formation and rice false smut balls development. Furthermore, the ΔUvVEA mutants were shown to be defective in the utilization of glucose. These findings proved the regulatory mechanism underlying the formation of rice false smut balls and chlamydospores and provided a basis for the further exploration of the mechanism of these processes.
Collapse
Affiliation(s)
- Mina Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
- Correspondence: ; Tel.: +86-25-8439-1002
| |
Collapse
|