1
|
Li J, Tao W, Zhou W, Xing J, Luo M, Yang Y. The comprehensive analysis of gut microbiome and spleen transcriptome revealed the immunomodulatory mechanism of Dendrobium officinale leaf polysaccharide on immunosuppressed mice. Int J Biol Macromol 2024; 278:134975. [PMID: 39179063 DOI: 10.1016/j.ijbiomac.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
In recent years, the immunomodulatory efficacy of Dendrobium officinale leaf polysaccharide (DOLP) has attracted much attention, but its potential immunomodulatory mechanism remains unclear. Therefore, we investigated the molecular mechanism of DOLP to ameliorate cyclophosphamide-induced immunosuppressed mice based on transcriptome profiling technology. The results indicated that DOLP significantly mitigated damage to immune organs, regulated the expression levels of inflammatory factors and immunoglobulins, and restored the balance of gut microbiota. Furthermore, it modulated metabolic pathways associated with the immune system, including antigen processing and presentation, hematopoietic cell line development, and natural killer cell-mediated cytotoxicity. DOLP might promote host hematopoietic function to enhance immune cell proliferation and differentiation by up-regulating Cd19, Cr2 and Il7r but down-regulating Dntt. DOLP also up-regulated the expression of MHC-1 (Gm11127, H2-K1, H2-Q10, H2-Q6, and H2-Q7), thus promoting antigen recognition by NK cells to enhance the innate immunity and helping T cells to deliver antigen and secrete immune factors so that enhancing the adaptive immunity.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengfan Luo
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Alharthi F. Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119814-119824. [PMID: 37930572 DOI: 10.1007/s11356-023-30742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1β, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
3
|
He G, Chen T, Huang L, Zhang Y, Feng Y, Liu Q, Yin X, Qu S, Yang C, Wan J, Liang L, Yan J, Liu W. Tibetan tea reduces obesity brought on by a high-fat diet and modulates gut flora in mice. Food Sci Nutr 2023; 11:6582-6595. [PMID: 37823111 PMCID: PMC10563754 DOI: 10.1002/fsn3.3607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
It has been shown that Tibetan tea (TT) inhibits obesity and controls lipid metabolism. The fundamental processes by which TT prevents obesity are yet entirely unknown. Consequently, this research aimed to ascertain if TT may prevent obesity by modifying the gut flora. Our research demonstrated that TT prevented mice from gaining weight and accumulating fat due to the high-fat diet (HFD), decreased levels of blood total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), and raised levels of high-density lipoprotein cholesterol (HDL-C). Adipogenesis-related genes such as acetyl-Coenzyme A carboxylase 1 (ACC1, LOC107476), fatty acid synthase (Fas, LOC14104), sterol regulatory element-binding protein-1c (SREBP-1c, LOC20787), CCAAT/enhancer-binding protein α (C/EBPα, LOC12606), stearoyl-CoA desaturase 1 (SCD1, LOC20249), and peroxisome proliferator-activated receptor γ (PPARγ, LOC19016) had their expression downregulated by lowering the Firmicutes/Bacteroidetes (F/B) ratio and controlling the number of certain gut bacteria. TT also alleviated HFD-induced abnormalities of the gut microbiota. The Muribaculaceae, Lachnospiraceae NK4A136_group, Alistipes, and Odoribacter families were identified as the major beneficial gut microorganisms using Spearman's correlation analysis. Fecal microbiota transplantation (FMT) demonstrated that TT's anti-obesity and gut microbiota-modulating benefits might be transmitted to mice on an HFD, demonstrating that one of TT's targets for preventing obesity is the gut microbiota. TT also increased the amount of short-chain fatty acids (SCFAs) in the feces, including acetic, propionic, and butyric acids. These results indicate the possible development of TT as a prebiotic to combat obesity and associated disorders. These results suggest that TT may act as a prebiotic against obesity and its associated diseases.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Tangcong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yiyuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yanjiao Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Qijun Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Xiaojing Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Shaokui Qu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jianghong Wan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
- Sichuan Jiang's Tibetan Tea Co., LTDYa'anChina
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| |
Collapse
|
4
|
Wang N, Lan C, Lu H, Li L, Liao D, Xu K, Sun H, Tang Y, Wang Y, Mei J, Wei M, Wu T, Zhu H. Preventive effect and mechanism of Tibetan tea extract on thrombosis in arachidonic acid-induced zebrafish determined via RNA-seq transcriptome profiles. PLoS One 2023; 18:e0285216. [PMID: 37205684 DOI: 10.1371/journal.pone.0285216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Thrombosis is a key pathological event in cardiovascular diseases and is also the most important targeting process for their clinical management. In this study, arachidonic acid (AA) was used to induce thrombus formation in zebrafish larvae. Blood flow, red blood cell (RBCs) aggregation and cellular oxidative stress were measured to evaluate the antithrombotic effect of Tibetan tea (TT). Meanwhile, the potential molecular mechanism was further explored by transcriptome sequencing (RNA-seq). The results indicated that TT could significantly restore heart RBCs intensity of thrombotic zebrafish, whilst decreasing RBCs accumulation in the caudal vein. The transcriptome analysis revealed that the preventive effect of TT on thrombosis could be mostly attributed to changes in lipid metabolism related signaling pathways, such as fatty acid metabolism, glycerollipid metabolism, ECM-receptor interaction and steroid biosynthesis signaling pathway. This study demonstrated that Tibetan tea could alleviate thrombosis by reducing oxidative stress levels and regulating lipid metabolism.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Luzhou Laojiao Co. Ltd, Luzhou, PR China
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Dalong Liao
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Haiyan Sun
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Yongqing Tang
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Yumeng Wang
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - Jie Mei
- Sichuan Jixiang Tea Co., Ltd., Ya'an, China
| | - Mengting Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
5
|
Yuan Y, Zhang B, He JL, Wei T, Liu DJ, Yang WJ, Guo CY, Nie XQ. Combinations of Tibetan tea and medicine food homology herbs: A new strategy for obesity prevention. Food Sci Nutr 2023; 11:504-515. [PMID: 36655078 PMCID: PMC9834885 DOI: 10.1002/fsn3.3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023] Open
Abstract
Obesity has become a significant global public health problem. Functional drinks have been an essential direction for obesity prevention research. The present study investigated the preventive effect and safety of winter melon and lotus leaf Tibetan tea (WLTT, a compound tea drink based on Ya'an Tibetan Tea and medicine food homology herbs) on obesity. The rats' hypercaloric high-fat diet (HFD) obesity model was established to evaluate obesity prevention and explored the mechanism through intestinal flora regulation. The results showed that in obese rats with the intervention of WLTT (400, 800, and 1600 mg/kg BW), the body weight, fat accumulation, adipocyte cell size, serum lipid levels, and antioxidant enzyme activity (SOD, GSH-Px, and MDA) were progressively improved. 16S rRNA high-throughput sequencing showed that WLTT could improve intestinal flora disorders due to HFD, which significantly reversed the relative abundance of Firmicutes and the F/B ratio associated with an HFD, and significantly upregulated the relative abundance of Verrucomicrobia. At the genus level, the downregulation of the relative abundance of Akkermansia and unclassified_Lachnospiraceae groups, and the upregulation of the relative abundance of Romboutsia, Ruminococcus, Corynebacteriume, and Saccharibacteria_genera_incertae_sedis groups brought about by the HFD were significantly reversed. The results of the above experiments were compared favorably with those of a parallel experiment with Bi -Sheng -Yuan slimming tea (BSY, a functional drink based on green tea and medicine food homology herbs). Overall, the findings have provided that WLTT can prevent obesity owing to an HFD by regulating intestinal flora and has a good safety profile, and combinations of Tibetan tea and medicine food homology herbs could be a new option for obesity prevention.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
- College of Pharmacy Zunyi Medical University Zunyi China
| | - Bin Zhang
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
| | - Jing-Liu He
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
| | - Ting Wei
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
| | - De-Jun Liu
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
| | - Wen-Jun Yang
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
| | - Cheng-Yi Guo
- Department of Pharmacy & Medical Laboratory Ya'an Polytechnic College Ya'an China
| | - Xu-Qiang Nie
- College of Pharmacy Zunyi Medical University Zunyi China
- Key Laboratory of the Basic Pharmacology of the Ministry of Education Zunyi Medical University Zunyi China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education Zunyi Medical University Zunyi China
| |
Collapse
|
6
|
Zhu C, Yang Z, He L, Lu X, Tang J, Laghi L. The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods 2022; 11:foods11192986. [PMID: 36230062 PMCID: PMC9563412 DOI: 10.3390/foods11192986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
As an essential beverage beneficial for Tibetan people, Ya’an Tibetan tea has received scarce attention, particularly from the point of view of the characterization of its metabolome. The aim of the study is to systematically characterize the metabolome of Tibetan tea by means of untargeted 1H-NMR. Moreover, the variations of its metabolome along ageing time are evaluated by taking advantage of univariate and multivariate analyses. A total of 45 molecules are unambiguously identified and quantified, comprising amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and catechins. The concentrations of amino acids, organic acids, carbohydrates and catechins are mainly determined by ageing time. The present study would serve as a reference guide for further work on the Ya’an Tibetan tea metabolome, therefore contributing to the related industries.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
7
|
Ma J, Chen S, Li Y, Wu X, Song Z. Arbutin improves gut development and serum lipids via Lactobacillus intestinalis. Front Nutr 2022; 9:948573. [PMID: 36159503 PMCID: PMC9502005 DOI: 10.3389/fnut.2022.948573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Arbutin has been widely studied in whitening, anti-inflammatory, and antioxidant. However, the interaction between arbutin and intestinal microbes has been rarely studied. Thus, mice were treated with arbutin concentrations of 0, 0.1, 0.2, 0.4, and 1 mg/ml. We found that arbutin promoted gut development such as villus length, villus areas, and villus length/crypt depth (L/D). Total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were significantly reduced by low concentrations of arbutin. Importantly, we analyzed the microbial composition in the control and 0.4 mg/ml arbutin group and found that the abundance of Lactobacillus intestinalis (L. intestinalis) was highest and enhanced in arbutin. Further, mice were fed with oral antibiotics and antibiotics + 0.4 mg/ml arbutin and then we transplanted fecal microbes from oral 0.4 mg/ml arbutin mice to mice pretreated with antibiotics. Our results showed that arbutin improves gut development, such as villus width, villus length, L/D, and villus areas. In addition, L. intestinalis monocolonization was carried out after a week of oral antibiotics and increased villus length, crypt depth, and villus areas. Finally, in vitro arbutin and L. intestinalis co-culture showed that arbutin promoted the growth and proliferation of L. intestinalis. Taken together, our results suggest that arbutin improves gut development and health of L. intestinalis. Future studies are needed to explore the function and mechanism of L. intestinalis affecting gut development.
Collapse
Affiliation(s)
- Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuai Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zehe Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Zehe Song,
| |
Collapse
|
8
|
Du C, Zhao Y, Wang K, Nan X, Chen R, Xiong B. Effects of Milk-Derived Extracellular Vesicles on the Colonic Transcriptome and Proteome in Murine Model. Nutrients 2022; 14:nu14153057. [PMID: 35893911 PMCID: PMC9332160 DOI: 10.3390/nu14153057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Evidence shows that effective nutritional intervention can prevent or mitigate the risk and morbidity of inflammatory bowel disease (IBD). Bovine milk extracellular vesicles (mEVs), a major bioactive constituent of milk, play an important role in maintaining intestinal health. The aims of this study were to assess the effects of mEV pre-supplementation on the colonic transcriptome and proteome in dextran sulphate sodium (DSS)-induced acute colitis, in order to understand the underlying molecular mechanisms of mEV protection against acute colitis. Our results revealed that dietary mEV supplementation alleviated the severity of acute colitis, as evidenced by the reduced disease activity index scores, histological damage, and infiltration of inflammatory cells. In addition, transcriptome profiling analysis found that oral mEVs significantly reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17A and IL-33), chemokine ligands (CXCL1, CXCL2, CXCL3, CXCL5, CCL3 and CCL11) and chemokine receptors (CXCR2 and CCR3). Moreover, oral mEVs up-regulated 109 proteins and down-regulated 150 proteins in the DSS-induced murine model, which were involved in modulating amino acid metabolism and lipid metabolism. Collectively, this study might provide new insights for identifying potential targets for the therapeutic effects of mEVs on colitis.
Collapse
|