1
|
Mvubu NE, Jacoby K. Mycobacterium tuberculosis complex molecular networks and their regulation: Implications of strain heterogeneity on epigenetic diversity and transcriptome regulation. Heliyon 2023; 9:e22611. [PMID: 38046135 PMCID: PMC10686871 DOI: 10.1016/j.heliyon.2023.e22611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Tuberculosis has been a public health crisis since the 1900, which has caused the highest mortalities due to a single bacterial infection worldwide, that was recently further complicated by the Coronavirus disease 2019 pandemic. The causative agent of Tuberculosis, Mycobacterium tuberculosis, belongs to a genetically well-characterized family of strains known as the Mycobacterium tuberculosis complex, which has complicated progress made towards eradicating Tuberculosis due to pathogen-specific phenotypic differences in the members of this complex. Mycobacterium tuberculosis complex strains are genetically diverse human- and animal-adapted pathogens belonging to 7 lineages (Indo-Oceanic, East-Asian, East-African Indian, Euro-American, M. africanum West Africa 1, M. africanum West Africa 2 and Ethopia), respectively and the recently identified Lineage 8 and M. africanum Lineage 9. Genomic studies have revealed that Mycobacterium tuberculosis complex members are ∼99 % similar, however, due to selective pressure and adaptation to human host, they are prone to mutations that have resulted in development of drug resistance and phenotypic heterogeneity that impact strain virulence. Furthermore, members of the Mycobacterium tuberculosis complex have preferred geographic locations and possess unique phenotypic characteristics that is linked to their pathogenicity. Due to the recent advances in development next generation sequencing platforms, several studies have revealed epigenetic changes in genomic regions combined with "unique" gene regulatory mechanisms through non-coding RNAs that are responsible for strain-specific behaviour on in vitro and in vivo infection models. The current review provides up to date epigenetic patterns, gene regulation through non-coding RNAs, together with implications of these mechanisms in down-stream proteome and metabolome, which may be responsible for "unique" responses to infection by members of the Mycobacterium tuberculosis complex. Understanding lineage-specific molecular mechanisms during infection may provide novel drug targets and disease control measures towards World Health organization END-TB strategy.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Kieran Jacoby
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
2
|
Zhu Y, Shi H, Tang T, Li Q, Peng Y, Bermudez LE, Hu C, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase fadD33 Promotes Bacillus Calmette-Guérin Survival in Hostile Extracellular and Intracellular Microenvironments in the Host. Cells 2023; 12:2610. [PMID: 37998345 PMCID: PMC10670722 DOI: 10.3390/cells12222610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), remains a significant global health challenge. The survival of M. tb in hostile extracellular and intracellular microenvironments is crucial for its pathogenicity. In this study, we discovered a Bacillus Calmette-Guérin (BCG) mutant B1033 that potentially affected mycobacterium pathogenicity. This mutant contained an insertion mutation gene, fadD33, which is involved in lipid metabolism; however, its direct role in regulating M. tb infection is not well understood. Here, we found that the absence of fadD33 reduced BCG adhesion and invasion into human pulmonary alveolar epithelial cells and increased the permeability of the mycobacterial cell wall, allowing M. tb to survive in the low pH and membrane pressure extracellular microenvironment of the host cells. The absence of fadD33 also inhibited the survival of BCG in macrophages by promoting the release of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumors necrosis factor-α, through the mitogen-activated protein kinase p38 signaling pathway. Overall, these findings provide new insights into M. tb mechanisms to evade host defenses and might contribute to identifying potential therapeutic and vaccine targets for tuberculosis prevention.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongling Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Tan Z, Fan J, He S, Zhang Z, Chu H. sRNA21, a novel small RNA, protects Mycobacterium abscessus against oxidative stress. J Gene Med 2023:e3492. [PMID: 36862004 DOI: 10.1002/jgm.3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND During infection, Mycobacterium abscessus encounters numerous environmental changes and adapts to them using a variety of complex mechanisms. Non-coding small RNAs (sRNAs) have been shown in other bacteria to be involved in post-transcriptional regulatory pathways, including environmental stress adaptation. However, the potential role of sRNAs in the resistance to oxidative stress in M. abscessus was not clearly described. METHODS In the present study, we analyzed putative sRNAs identified by RNA-sequencing (RNA-seq) experiments in M. abscessus ATCC_19977 under oxidative stress, and the transcription profiles of sRNAs with differential expression were verified by quantitative reverse transcription-PCR (qRT-PCR). Six sRNA overexpression strains were constructed, and the differences in growth curves between these strains and the control strain were verified. An upregulated sRNA under oxidative stress was selected and named sRNA21. The survival ability of the sRNA21 overexpression strain was assessed, and computer-based approaches were used to predict the targets and pathways regulated by sRNA21. The total ATP production and NAD+ /NADH ratio of the sRNA21 overexpression strain were measured. The expression level of antioxidase-related genes and the activity of antioxidase were tested to confirm the interaction of sRNA21 with the predicted target genes in silico. RESULTS In total, 14 putative sRNAs were identified under oxidative stress, and the qRT-PCR analysis of six sRNAs showed comparable results to RNA-seq assays. Overexpression of sRNA21 in M. abscessus increased cell growth rate and intracellular ATP level before and after peroxide exposure. The expression of genes encoding alkyl hydroperoxidase and superoxide dismutase was significantly increased, and superoxide dismutase activity was enhanced in the sRNA21 overexpression strain. Meanwhile, after sRNA21 overexpression, the intracellular NAD+ /NADH ratio decreased, indicating changes in redox homeostasis. CONCLUSIONS Our findings show that sRNA21 is an oxidative stress-induced sRNA that increases M. abscessus survival and promotes the expression of antioxidant enzymes under oxidative stress. These findings may provide new insights into the adaptive transcriptional response of M. abscessus to oxidative stress.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|