1
|
Saltykova VA, Danilova OV, Oshkin IY, Belova SE, Suzina NE, Pimenov NV, Dedysh SN. Methyloraptor flagellatus gen. nov., sp. nov., novel Ancalomicrobiaceae-affiliated facultatively methylotrophic bacteria that feed on methanotrophs of the genus Methylococcus. Syst Appl Microbiol 2025; 48:126565. [PMID: 39591941 DOI: 10.1016/j.syapm.2024.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
A morphologically conspicuous microbial association was detected in a bioreactor running in a continuous mode with methanotrophic bacteria of the genus Methylococcus and natural gas as a growth substrate. The association consisted of spherical Methylococcus cells colonized by elongated rods, which produced rosette-like aggregates and inhibited the cultivation process. An isolate of these bacteria, strain S20T, was obtained and identified as belonging to the alphaproteobacterial family Ancalomicrobiaceae but displaying only a distant relationship (93.9-95.1 % 16S rRNA gene sequence similarity) to characterized members of this family. Strain S20T was represented by aerobic, motile, facultatively methylotrophic bacteria, which grew between 10 and 45 °C (optimum 30-35 °C) in a pH range of 4.5-8.5 (optimum pH 6.0). These bacteria were capable of attaching to Methylococcus cells and breaking the integrity of methanotroph cell walls, presumably to feed on methanol. The same interaction was observed with Methylomonas species. The finished genome sequence of strain S20T consisted of a 5.0 Mb chromosome and one plasmid, 0.26 Mb in size; the DNA G + C content was 68.4 %. The genome encoded 3 rRNA operons and ∼ 4400 proteins including MxaFI- and XoxF-like methanol dehydrogenases, all enzymes of the serine pathway as well as a complete chemotaxis pathway, a unipolar polysaccharide adhesin, and a wide range of peptidases. The genome sequence displayed 67.20-69.56 % average amino acid identity to those of earlier described Ancalomicrobiaceae species. We propose to classify these bacteria as representing a novel genus and species, Methyloraptor flagellatus gen. nov., sp. nov., with the type strain S20T (=KCTC 8649T = VKM B-3853T).
Collapse
Affiliation(s)
- Victoria A Saltykova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga V Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Igor Y Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana E Belova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Liu C, Schmitz RA, Pol A, Hogendoorn C, Verhagen D, Peeters SH, van Alen TA, Cremers G, Mesman RA, Op den Camp HJM. Active coexistence of the novel gammaproteobacterial methanotroph 'Ca. Methylocalor cossyra' CH1 and verrucomicrobial methanotrophs in acidic, hot geothermal soil. Environ Microbiol 2024; 26:e16602. [PMID: 38454738 DOI: 10.1111/1462-2920.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2 , CH4 , H2 S and H2 . These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name 'Candidatus Methylocalor cossyra' CH1.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Schmitz
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arjan Pol
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Daniël Verhagen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Theo A van Alen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Mesman
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Pearce D, Brooks E, Wright C, Rankin D, Crombie AT, Murrell JC. Complete genome sequences of Methylococcus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk) isolated from a landfill methane biofilter. Microbiol Resour Announc 2024; 13:e0067523. [PMID: 38236040 PMCID: PMC10868220 DOI: 10.1128/mra.00675-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Here we report the complete genome sequence of two moderately thermophilic methanotrophs isolated from a landfill methane biofilter, Methylococcus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk).
Collapse
Affiliation(s)
- David Pearce
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Elliot Brooks
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | - Andrew T. Crombie
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Oshkin IY, Tikhonova EN, Suleimanov RZ, Ashikhmin AA, Ivanova AA, Pimenov NV, Dedysh SN. All Kinds of Sunny Colors Synthesized from Methane: Genome-Encoded Carotenoid Production by Methylomonas Species. Microorganisms 2023; 11:2865. [PMID: 38138009 PMCID: PMC10745290 DOI: 10.3390/microorganisms11122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.
Collapse
Affiliation(s)
- Igor Y. Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ekaterina N. Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ruslan Z. Suleimanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Aleksandr A. Ashikhmin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
5
|
Awala SI, Kim Y, Gwak JH, Seo C, Lee S, Kang M, Rhee SK. Methylococcus mesophilus sp. nov., the first non-thermotolerant methanotroph of the genus Methylococcus, from a rice field. Int J Syst Evol Microbiol 2023; 73. [PMID: 37824181 DOI: 10.1099/ijsem.0.006077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Strain 16-5T, a mesophilic methanotroph of the genus Methylococcus, was isolated from rice field soil sampled in Chungcheong Province, Republic of Korea. Strain 16-5T had both particulate and soluble methane monooxygenases and could only grow on methane and methanol as electron donors. Strain 16-5 T cells are Gram-negative, white to light tan in color, non-motile, non-flagellated, diplococcoid to cocci, and have the typical type I intracytoplasmic membrane system. Strain 16-5T grew at 18-38 °C (optimum, 27 °C) and at pH 5.0-8.0 (optimum, pH 6.5-7.0). C16 : 1 ω7c (38.8%), C16 : 1 ω5c (18.8%), C16 : 1 ω6c (16.8%) and C16 : 0 (16.9%) were the major fatty acids, and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phospholipid were the major polar lipids. The main respiratory quinone was methylene-ubiquinone-8. Strain 16-5T displayed the highest 16S rRNA gene sequence similarities to other taxonomically recognized members of the genus Methylococcus, i.e. Methylococcus capsulatus TexasT (98.62%) and Methylococcus geothermalis IM1T (98.49 %), which were its closest relatives. It did, however, differ from all other taxonomically described Methylococcus species due to some phenotypic differences, most notably its inability to grow at temperatures above 38 °C, where other Methylococcus species thrive. Its 4.34 Mbp-sized genome has a DNA G+C content of 62.47 mol%, and multiple genome-based properties such as average nucleotide identity and digital DNA-DNA hybridization value distanced it from its closest relatives. Based on the data presented above, this strain represents the first non-thermotolerant species of the genus Methylococcus. The name Methylococcus mesophilus sp. nov. is proposed, and 16-5T (=JCM 35359T=KCTC 82050T) is the type strain.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yongman Kim
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chanmee Seo
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Minseo Kang
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
6
|
Complete Genome Sequence of Methylococcus capsulatus MIR, a Methanotroph Capable of Growth on Methanol. Microbiol Resour Announc 2022; 11:e0054222. [PMID: 35976007 PMCID: PMC9476900 DOI: 10.1128/mra.00542-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylococcus capsulatus MIR is an aerobic methanotroph that was isolated from an activated sludge sample and is capable of growth on methanol. The finished genome of strain MIR is 3.2 Mb in size. It encodes both MxaFI and XoxF methanol dehydrogenases, as well as three different isozymes of formate dehydrogenase.
Collapse
|
7
|
Metabolism Interactions Promote the Overall Functioning of the Episymbiotic Chemosynthetic Community of Shinkaia crosnieri of Cold Seeps. mSystems 2022; 7:e0032022. [PMID: 35938718 PMCID: PMC9426478 DOI: 10.1128/msystems.00320-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remarkably diverse bacteria have been observed as biofilm aggregates on the surface of deep-sea invertebrates that support the growth of hosts through chemosynthetic carbon fixation. Growing evidence also indicates that community-wide interactions, and especially cooperation among symbionts, contribute to overall community productivity. Here, metagenome-guided metatranscriptomic and metabolic analyses were conducted to investigate the taxonomic composition, functions, and potential interactions of symbionts dwelling on the seta of Shinkaia crosnieri lobsters in a methane cold seep. Methylococcales and Thiotrichales dominated the community, followed by the Campylobacteriales, Nitrosococcales, Flavobacteriales, and Chitinophagales Metabolic interactions may be common among the episymbionts since many separate taxon genomes encoded complementary genes within metabolic pathways. Specifically, Thiotrichales could contribute to detoxification of hydroxylamine that is a metabolic by-product of Methylococcales. Further, Nitrosococcales may rely on methanol leaked from Methylococcales cells that efficiently oxidize methane. Elemental sulfur may also serve as a community good that enhances sulfur utilization that benefits the overall community, as evidenced by confocal Raman microscopy. Stable intermediates may connect symbiont metabolic activities in cyclical oxic-hypoxic fluctuating environments, which then enhance overall community functioning. This hypothesis was partially confirmed via in situ experiments. These results highlight the importance of microbe-microbe interactions in symbiosis and deep-sea adaptation. IMPORTANCE Symbioses between chemosynthetic bacteria and marine invertebrates are common in deep-sea chemosynthetic ecosystems and are considered critical foundations for deep-sea colonization. Episymbiotic microorganisms tend to form condensed biofilms that may facilitate metabolite sharing among biofilm populations. However, the prevalence of metabolic interactions among deep-sea episymbionts and their contributions to deep-sea adaptations are not well understood due to sampling and cultivation difficulties associated with deep-sea environments. Here, we investigated metabolic interactions among the episymbionts of Shinkaia crosnieri, a dominant chemosynthetic ecosystem lobster species in the Northwest Pacific Ocean. Meta-omics characterizations were conducted alongside in situ experiments to validate interaction hypotheses. Furthermore, imaging analysis was conducted, including electron microscopy, fluorescent in situ hybridization (FISH), and confocal Raman microscopy (CRM), to provide direct evidence of metabolic interactions. The results support the Black Queen Hypothesis, wherein leaked public goods are shared among cohabitating microorganisms to enhance the overall adaptability of the community via cooperation.
Collapse
|