1
|
Tang PYP, Loh AAR, Hu D, Deignan LK, Summers S, Pereyra JPA, Case RJ. Draft genomes of two Roseibium spp. isolated from the coral Pachyseris speciosa from a Singaporean reef. Microbiol Resour Announc 2024:e0076524. [PMID: 39601522 DOI: 10.1128/mra.00765-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Two Roseibium spp. strains were isolated from skeletal macerates of the Singaporean coral Pachyseris speciosa at an ambient high temperature. We sequenced the genomes of SCP14 (JBDZYH000000000) and SCP15 (JBDZYI000000000), which revealed genomes containing genetic elements that play a role in coral health during thermal stress.
Collapse
Affiliation(s)
- Pei Yi Peggy Tang
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aaron An Rong Loh
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dalong Hu
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- St John's Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Stephen Summers
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- St John's Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Joao Paulo Andre Pereyra
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rebecca J Case
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Huang Y, Zhang X, Xin Y, Tian J, Li M. Distinct microbial nitrogen cycling processes in the deepest part of the ocean. mSystems 2024; 9:e0024324. [PMID: 38940525 PMCID: PMC11265455 DOI: 10.1128/msystems.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.
Collapse
Affiliation(s)
- Yuhan Huang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Jiwei Tian
- MOE Key Laboratory of Physical Oceanography, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Gong S, Liang J, Li G, Xu L, Tan Y, Zheng X, Jin X, Yu K, Xia X. Linking coral fluorescence phenotypes to thermal bleaching in the reef-building Galaxea fascicularis from the northern South China Sea. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:155-167. [PMID: 38433965 PMCID: PMC10902222 DOI: 10.1007/s42995-023-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 03/05/2024]
Abstract
Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions, yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations, associated with fluorescence phenotypes due to GFP-like proteins, remains unclear. In this study, the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis, green and brown. The results reveal that brown G. fascicularis was more susceptible to bleaching than green G. fascicularis when exposed to a higher growth temperature of 32 °C. Both phenotypes of G. fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont, Durusdinium trenchii. However, the brown G. fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32 °C. The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected, but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G. fascicularis. Under heat stress of 32 °C, the gene encoding green fluorescent protein (GFP)-like and chromosome-associated proteins, as well as genes related to oxidative phosphorylation, cell growth and death showed lower transcriptional levels in the brown G. fascicularis compared to the green G. fascicularis. Overall, the results demonstrate that the green form of G. fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria, likely due to higher gene transcription levels and defense ability. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00190-1.
Collapse
Affiliation(s)
- Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, 53004 China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530 China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Xinqing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Xuejie Jin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, 53004 China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| |
Collapse
|
4
|
Maire J, Philip GK, Livingston J, Judd LM, Blackall LL, van Oppen MJH. Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. mSystems 2023; 8:e0086023. [PMID: 37909753 PMCID: PMC10746172 DOI: 10.1128/msystems.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jadzia Livingston
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
5
|
Liu X, Ma Y, Wu J, Wang P, Wang Y, Wang A, Yin Q, Ma H, Chan LL, Wu B. Characterizing the Influence of a Heterotrophic Bicosoecid Flagellate Pseudobodo sp. on the Dinoflagellate Gambierdiscus balechii. Toxins (Basel) 2023; 15:657. [PMID: 37999520 PMCID: PMC10674679 DOI: 10.3390/toxins15110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Microbial interactions including competition, mutualism, commensalism, parasitism, and predation, which can be triggered by nutrient acquisition and chemical communication, are universal phenomena in the marine ecosystem. The interactions may influence the microbial population density, metabolism, and even their environmental functions. Herein, we investigated the interaction between a heterotrophic bicosoecid flagellate, Pseudobodo sp. (Bicoecea), and a dinoflagellate, Gambierdiscus balechii (Dinophyceae), which is a well-known ciguatera food poisoning (CFP) culprit. The presence of Pseudobodo sp. inhibited the algal proliferation and decreased the cardiotoxicity of zebrafish in the algal extract exposure experiment. Moreover, a significant difference in microbiome abundance was observed in algal cultures with and without Pseudobodo sp. Chemical analysis targeting toxins was performed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with molecular networking (MN), showing a significant alteration in the cellular production of gambierone analogs and some super-carbon chain compounds. Taken together, our results demonstrated the impact of heterotrophic flagellate on the photosynthetic dinoflagellates, revealing the complex dynamics of algal toxin production and the ecological relationships related to dinoflagellates in the marine environment.
Collapse
Affiliation(s)
- Xiaowan Liu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Yinuo Wang
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Anli Wang
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Qizhao Yin
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Haiying Ma
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| |
Collapse
|
6
|
Complete Genome Sequence of Roseibium sp. Strain Sym1, a Bacterial Associate of Symbiodinium linucheae, the Microalgal Symbiont of the Anemone Aiptasia. Microbiol Resour Announc 2023; 12:e0111822. [PMID: 36790190 PMCID: PMC10019159 DOI: 10.1128/mra.01118-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We sequenced the genome of Roseibium sp. strain Sym1, a strain isolated from a monoculture of a Symbiodiniaceae marine dinoflagellate, Symbiodinium linucheae, a microalgal symbiont of cnidarians. The completed genome consists of one circular chromosome of 6,694,563 bp and four plasmids of 192,102 bp, 160,136 bp, 120,881 bp, and 89,413 bp.
Collapse
|
7
|
Genomic Analysis Reveals Adaptation of Vibrio campbellii to the Hadal Ocean. Appl Environ Microbiol 2022; 88:e0057522. [PMID: 35916502 PMCID: PMC9397096 DOI: 10.1128/aem.00575-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genus Vibrio is characterized by high metabolic flexibility and genome plasticity and is widely distributed in the ocean from euphotic layers to deep-sea environments. The relationship between genome features and environmental adaptation strategies of Vibrio has been extensively investigated in coastal environments, yet very little is known about their survival strategies in oligotrophic deep-sea. In this study, we compared genomes of five Vibrio campbellii strains isolated from the Mariana and Yap Trenches at different water depths, including two epipelagic strains and three hadopelagic strains, to identify genomic characteristics that facilitate survival in the deep sea. Genome streamlining is found in pelagic strains, such as smaller genome sizes, lower G+C contents, and higher gene densities, which might be caused by long-term residence in an oligotrophic environment. Phylogenetic results showed that these five Vibrio strains are clustered into two clades according to their collection depth. Indeed, hadopelagic isolates harbor more genes involved in amino acid metabolism and transport, cell wall/membrane/envelope biogenesis, and inorganic ion transport and metabolism through comparative genomics analysis. Specific macrolide export gene and more tellurite resistance genes present in hadopelagic strains by the annotation of antibiotic and metal resistance genes. In addition, several genes related to substrate degradation are enriched in hadopelagic strains, such as chitinase genes, neopullulanase genes, and biopolymer transporter genes. In contrast, epipelagic strains are unique in their capacity for assimilatory nitrate reduction. The genomic characteristics investigated here provide insights into how Vibrio adapts to the deep-sea environment through genomic evolution. IMPORTANCE With the development of deep-sea sampling technology, an increasing number of deep-sea Vibrio strains have been isolated, but the adaptation mechanism of these eutrophic Vibrio strains to the deep-sea environment is unclear. Here, our results show that the genome of pelagic Vibrio is streamlined to adapt to a long-term oligotrophic environment. Through a phylogenomic analysis, we find that genomic changes in marine Vibrio campbellii strains are related to water depth. Our data suggest that an increase in genes related to antibiotic resistance, degradation of macromolecular and refractory substrates, and utilization of rare ions is related to the adaptation of V. campbellii strains to adapt to hadal environments, and most of the increased genes were acquired by horizontal gene transfer. These findings may deepen our understanding of adaptation strategies of marine bacteria to the extreme environment in hadal zones.
Collapse
|