1
|
Wei ZY, Feng M, Zhang DX, Jiang CY, Deng Y, Wang ZJ, Feng K, Song Y, Zhou N, Wang YL, Liu SJ. Deep insights into the assembly mechanisms, co-occurrence patterns, and functional roles of microbial community in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 263:120029. [PMID: 39299446 DOI: 10.1016/j.envres.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of β diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.
Collapse
Affiliation(s)
- Zi-Yan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ding-Xi Zhang
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Jun Wang
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs & School of Rural Revitalization), Hainan University, Haikou, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yang Song
- PetroChina Planning and Engineering Institute, Beijing, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Li W, Xia Y, Li N, Chang J, Liu J, Wang P, He X. Temporal assembly patterns of microbial communities in three parallel bioreactors treating low-concentration coking wastewater with differing carbon source concentrations. J Environ Sci (China) 2024; 137:455-468. [PMID: 37980030 DOI: 10.1016/j.jes.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 11/20/2023]
Abstract
Carbon source is an important factor of biological treatment systems, the effects of which on their temporal community assembly patterns are not sufficiently understood currently. In this study, the temporal dynamics and driving mechanisms of the communities in three parallel bioreactors for low-concentration coking wastewater (CWW) treatment with differing carbon source concentrations (S0 with no glucose addition, S1 with 200 mg/L glucose addition and S2 with 400 mg/L glucose addition) were comprehensively studied. High-throughput sequencing and bioinformatics analyses including network analysis and Infer Community Assembly Mechanisms by Phylogenetic bin-based null model (iCAMP) were used. The communities of three systems showed turnover rates of 0.0029∼0.0034 every 15 days. Network analysis results showed that the S0 network showed higher positive correlation proportion (71.43%) and clustering coefficient (0.33), suggesting that carbon source shortage in S0 promoted interactions and cooperation of microbes. The neutral community model analysis showed that the immigration rate increased from 0.5247 in S0 to 0.6478 in S2. The iCAMP analysis results showed that drift (45.89%) and homogeneous selection (31.68%) dominated in driving the assembly of all the investigated microbial communities. The contribution of homogeneous selection increased with the increase of carbon source concentrations, from 27.92% in S0 to 36.08% in S2. The OTUs participating in aerobic respiration and tricarboxylic acid (TCA) cycle were abundant among the bins mainly affected by deterministic processes, while those related to the metabolism of refractory organic pollutants in CWW such as alkanes, benzenes and phenols were abundant in the bins dominated by stochastic processes.
Collapse
Affiliation(s)
- Weijia Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Yu Xia
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Na Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jie Chang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jing Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Pei Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Yuan H, Zhang R, Li Q, Han Q, Lu Q, Wu J. Unveiling the ecological significance of phosphorus fractions in shaping bacterial and archaeal beta diversity in mesotrophic lakes. Front Microbiol 2023; 14:1279751. [PMID: 37886062 PMCID: PMC10598868 DOI: 10.3389/fmicb.2023.1279751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Both community variation and phosphorus (P) fractions have been extensively studied in aquatic ecosystems, but how P fractions affect the mechanism underlying microbial beta diversity remains elusive, especially in sediment cores. Here, we obtained two sediment cores to examine bacterial and archaeal beta diversity from mesotrophic lakes Hongfeng Lake and Aha Lake, having historically experienced severe eutrophication. Utilizing the Baselga's framework, we partitioned bacterial and archaeal total beta diversity into two components: species turnover and nestedness, and then examined their sediment-depth patterns and the effects of P fractions on them. We found that total beta diversity, species turnover or nestedness consistently increased with deeper sediment layers regarding bacteria and archaea. Notably, there were parallel patterns between bacteria and archaea for total beta diversity and species turnover, which is largely underlain by equivalent processes such as environmental selection. For both microbial taxa, total beta diversity and species turnover were primarily constrained by metal oxide-bound inorganic P (NaOH-Pi) and sediment total phosphorus (STP) in Hongfeng Lake, while largely affected by reductant-soluble total P or calcium-bound inorganic P in Aha Lake. Moreover, NaOH-Pi and STP could influence bacterial total beta diversity by driving species nestedness in Hongfeng Lake. The joint effects of organic P (Po), inorganic P (Pi) and total P fractions indicated that P fractions are important to bacterial and archaeal beta diversity. Compared to Po fractions, Pi fractions had greater pure effects on bacterial beta diversity. Intriguingly, for total beta diversity and species turnover, archaea rather than bacteria are well-explained by Po fractions in both lakes, implying that the archaeal community may be involved in Po mineralization. Overall, our study reveals the importance of P fractions to the mechanism underlying bacterial and archaeal beta diversity in sediments, and provides theoretical underpinnings for controlling P sources in biodiversity conservation.
Collapse
Affiliation(s)
- Haijun Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Runyu Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Qiuxing Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- College of Earth Science, Chengdu University of Technology, Chengdu, China
| | - Qiao Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiping Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zheng L, Ren M, Liu T, Ding A, Xie E. Base type determines the effects of nucleoside monophosphates on microalgae-bacteria symbiotic systems. CHEMOSPHERE 2023; 317:137943. [PMID: 36702408 DOI: 10.1016/j.chemosphere.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are promising sources of clean energy. Bioflocculation by cocultured bacteria is an effective way to harvest microalgae. As a key foundation for microorganisms, phosphorus is theoretically effective in shaping microalgae production and flocculation. In this study, the impacts of 23 nucleoside monophosphates on Auxenochlorella pyrenoidosa growth, lipid synthesis, and self-settlement and on the symbiotic bacterial system were investigated. Adenosine monophosphate was the most effective in enhancing microalgae development (2.14-3.16 × 108 cells/mL) and lipid production (average 10.48%) and resulted in a low settling velocity. Samples were divided into two groups, purine and pyrimidine feeding, according to a random forest analysis (OOB = 0%, p < 0.001). Purine feeding resulted in the highest soluble extracellular protein and polysaccharide secretion (p < 0.01). KEGG ortholog count prediction of functional genes related to biofilm formation was conducted using PICRUSt2, and significant upregulation (FC ≥ 1.77, p < 0.05) of the extracellular polymeric substance formation functional group was observed in the adenosine and guanosine treatments. The symbiotic bacterial community structure differed substantially between purine- and pyrimidine-feeding systems. In summary, these results indicated that the effect of nucleoside monophosphates on the microalgae-bacteria system is determined by the base type (purine or pyrimidine) rather than the molecular structure (cyclic or noncyclic).
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Mengli Ren
- Middle Reach Hydrology and Water Resource Bureau of YRCC, Shanxi, 030600, PR China
| | - Tingting Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, PR China; Engineering Research Center of Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Zheng L, Wang X, Ren M, Yuan D, Tan Q, Xing Y, Xia X, Xie E, Ding A. Comparing with oxygen, nitrate simplifies microbial community assembly and improves function as an electron acceptor in wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120243. [PMID: 36155228 DOI: 10.1016/j.envpol.2022.120243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biochemical oxidation and reduction are key processes in treating biological wastewater and they require the presence of electron acceptors. The functional impact of electron acceptors on microbiomes provides strategies for improving the treatment efficiency. This research focused on two of the most important electron acceptors, nitrate and oxygen. Molecule ecological network, null model, and functional prediction based on high-throughput sequencing were used to analyze the microbiomes features and assembly mechanism. The results revealed nitrate via the homogeneous selection (74.0%) decreased species diversity, while oxygen via the homogeneous selection (51.1%) and dispersal limitation (29.6%) increased the complexity of community structure. Microbes that were more strongly homogeneously selected for assembly included polyphosphate accumulating organisms (PAOs), such as Pseudomonas and variovorax in the nitrate impacted community; Pseudomonas, Candidatus_Accumulibacter, Thermomonas and Dechloromonas, in the oxygen impacted community. Nitrate simplified species interaction and increased the abundance of functional genes involving in tricarboxylic acid cycle (TCA cycle), electron transfer, nitrogen metabolism, and membrane transport. These findings contribute to our knowledge of assembly process and interactions among microorganisms and lay a theoretical basis for future microbial regulation strategies in wastewater treatment.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Mengli Ren
- Middle Reach Hydrology and Water Resource Bureau of YRCC, Shanxi 030600, PR China
| | - Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China; Engineering Research Center of Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|