1
|
Guider JT, Yoshimura KM, Block KR, Biddle JF, Shah Walter SR. Archaeal blooms and busts in an estuarine time series. Environ Microbiol 2024; 26:e16584. [PMID: 38372423 DOI: 10.1111/1462-2920.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Coastal bays, such as Delaware Bay, are highly productive, ecologically important transitions between rivers and the coastal ocean. They offer opportunities to investigate archaeal assemblages across seasons, with the exchange of water masses that occurs with tidal cycles, and in the context of variable organic matter quality. For a year-long estuarine, size-fractionated time series, we used amplicon sequencing, chemical measurements, and qPCR to follow archaeal groups through the seasons. We detected seasonally high abundances of Marine Group II archaea in summer months which correlate with indicators of phytoplankton production, although not phytoplankton biomass. Although previous studies have reported associations between Marine Group II archaea and particles, here they are almost entirely found in very small particles (0.22-0.7 μm), suggesting they are free-living cells. Populations of Nitrososphaeria did not vary with particle size or environmental conditions. Methanogens were significant fractions of archaeal sequences in large particles at low tide during winter months. Contrary to expectations, Nanoarchaeia were found predominantly in the free-living fraction despite the previous observation that they require an association with hosts. These results underscore the utility of time series studies in shallow, tidally mixed estuarine environments that capture variable conditions for understanding the ecology and biogeochemistry of planktic archaea.
Collapse
Affiliation(s)
- Justin T Guider
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Kristin M Yoshimura
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kaleigh R Block
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Sunita R Shah Walter
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
2
|
Hu X, Huang Y, Gu G, Hu H, Yan H, Zhang H, Zhang R, Zhang D, Wang K. Distinct patterns of distribution, community assembly and cross-domain co-occurrence of planktonic archaea in four major estuaries of China. ENVIRONMENTAL MICROBIOME 2023; 18:75. [PMID: 37805516 PMCID: PMC10560434 DOI: 10.1186/s40793-023-00530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Archaea are key mediators of estuarine biogeochemical cycles, but comprehensive studies comparing archaeal communities among multiple estuaries with unified experimental protocols during the same sampling periods are scarce. Here, we investigated the distribution, community assembly, and cross-domain microbial co-occurrence of archaea in surface waters across four major estuaries (Yellow River, Yangtze River, Qiantang River, and Pearl River) of China cross climatic zones (~ 1,800 km) during the winter and summer cruises. RESULTS The relative abundance of archaea in the prokaryotic community and archaeal community composition varied with estuaries, seasons, and stations (reflecting local environmental changes such as salinity). Archaeal communities in four estuaries were overall predominated by ammonia-oxidizing archaea (AOA) (aka. Marine Group (MG) I; primarily Nitrosopumilus), while the genus Poseidonia of Poseidoniales (aka. MGII) was occasionally predominant in Pearl River estuary. The cross-estuary dispersal of archaea was largely limited and the assembly mechanism of archaea varied with estuaries in the winter cruise, while selection governed archaeal assembly in all estuaries in the summer cruise. Although the majority of archaea taxa in microbial networks were peripherals and/or connectors, extensive and distinct cross-domain associations of archaea with bacteria were found across the estuaries, with AOA as the most crucial archaeal group. Furthermore, the expanded associations of MGII taxa with heterotrophic bacteria were observed, speculatively indicating the endogenous demand for co-processing high amount and diversity of organic matters in the estuarine ecosystem highly impacted by terrestrial/anthropogenic input, which is worthy of further study. CONCLUSIONS Our results highlight the lack of common patterns in the dynamics of estuarine archaeal communities along the geographic gradient, expanding the understanding of roles of archaea in microbial networks of this highly dynamic ecosystem.
Collapse
Affiliation(s)
- Xuya Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yujie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Gaoke Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hanjing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huizhen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China.
| |
Collapse
|
3
|
Ma Z, Gao L, Sun M, Liao Y, Bai S, Wu Z, Li J. Microbial Diversity in Groundwater and Its Response to Seawater Intrusion in Beihai City, Southern China. Front Microbiol 2022; 13:876665. [PMID: 35910635 PMCID: PMC9328385 DOI: 10.3389/fmicb.2022.876665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Seawater intrusion is a major concern commonly found in coastal aquifers worldwide. Because of the intense aquifer exploitation and land-based marine aquaculture in the coastal area of Beihai City, Guangxi Zhuang Autonomous Region, China, numerous underground aquifers in this area have been affected by seawater intrusion. However, the microbial communities in freshwater aquifers and their response to seawater intrusion are still unclear. In this study, groundwater from three aquifers was collected from three monitoring sites at different distances from the coastline in the coastal area of Beihai City, and the hydrochemical characteristics of these groundwater samples and the structure of the associated microbial communities were analyzed. The Cl- concentration of the samples indicated that seawater intrusion had occurred in the research area up to 1.5 km away from the coastline, but the monitoring site 2 km away from the coastline had yet to be affected. Statistical analysis showed that the bacterial communities in different groundwater aquifers were significantly correlated with the Cl- concentration, thereby suggesting that the extent of seawater intrusion might be one of the primary factors shaping bacterial composition in groundwater of this area, but the composition and distribution of archaea did not show a significant response to seawater intrusion and presented no apparent correlation with the Cl- concentration. α-, γ-Proteobacteria and Bacteroidota were the dominant bacterial lineages, accounting for about 58-95% of the bacterial communities. Meanwhile, the predominant archaeal taxa were mainly composed of Crenarchaeota, Nanoarchaeota, and Thermoplasmatota, as accounting for 83-100%. Moreover, there was significant spatial heterogeneity of microbial communities in the aquifers affected by varying degrees of seawater intrusion. The microbial communities inhabiting the unconfined aquifer were influenced by the geochemical fluctuation caused by seawater infiltration from land-based marine aquaculture ponds and the diffusion of eutrophic surface water. In contrast, changes in microbial community structure in the confined aquifers were closely related to the environmental gradient caused by different degrees of seawater intrusion. In addition, we also found that the tidal cycle did not significantly affect the structure of microbial communities inhabiting confined aquifers that had been long affected by seawater intrusion.
Collapse
Affiliation(s)
- Zhonglin Ma
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Long Gao
- Marine Geological Survey Institute of Guangxi Zhuang Autonomous Region, Beihai, China
| | - Mingxue Sun
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Yongjie Liao
- Marine Geological Survey Institute of Guangxi Zhuang Autonomous Region, Beihai, China
| | - Shijie Bai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Zijun Wu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|