1
|
Gu Y, Li J, Liu Z, Zhang M, Yang Z, Yin H, Chai L, Meng D, Xiao N. Different Adaption Strategies of Abundant and Rare Microbial Communities in Sediment and Water of East Dongting Lake. J Microbiol 2024; 62:829-843. [PMID: 39438387 DOI: 10.1007/s12275-024-00171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
The dynamics of aquatic microbes is of great importance for comprehending the acclimatisation and evolution of microorganisms in lake ecology. However, little is known about the adaption strategies of microbial communities in East Dongting Lake, which had special and complexity geographical characteristics. A semi-enclosed lake area (A) and a waterway connected to Yangtze River (B) both existed in the lake zone. Here, we investigated bacterial and fungal community diversity, community network and community assembly processes in sediment and water. The results indicated that the proportion of OTU numbers and their relative abundance for rare and abundant taxa were different obviously between sediment and water, but not between bacteria and fungi. However, abundant subcommunities dominated the shifts of bacterial community diversity and structure in A region, while rare subcommunities for fungal community diversity. Compared to fungal community, bacterial network was more compact and more key stones were identified as rare taxa. In addition, stochastic processes (dispersal limitation) drove the community assembly of abundant and rare subcommunities, but the effects of deterministic processes (including variable and heterogeneous selections) affected more on rare rather than abundant taxa. Partial Mantel test further indicated that the effect of environmental factors was a stronger force in shaping abundant bacterial subcommunities (TOC, NH4+-N, TN, and ORP) and rare fungal subcommunities (ORP). Environmental factors explained more of the variation in bacterial community structure than that in fungal community structure, although they had additional effects on fungal community diversity and community assembly. Moreover, bacterial community affected the fungal community as a biotic factor in water. This research provided new insights into better understanding of microbial communities in the complex environment of the East Dongting Lake.
Collapse
Affiliation(s)
- Yabing Gu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Junsheng Li
- Command Center for Comprehensive Survey of Natural Resources, China Geological Survey Bureau, Beijing, 100055, People's Republic of China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| |
Collapse
|
2
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Qiu Z, He S, Lian CA, Qiao X, Zhang Q, Yao C, Mu R, Wang L, Cao XA, Yan Y, Yu K. Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments. NPJ Biofilms Microbiomes 2024; 10:62. [PMID: 39069527 DOI: 10.1038/s41522-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Shuhang He
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Ciqin Yao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Li Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiao-Ai Cao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Pearman JK, Thomson-Laing G, Thompson L, Waters S, Vandergoes MJ, Howarth JD, Duggan IC, Hogg ID, Wood SA. Human access and deterministic processes play a major role in structuring planktonic and sedimentary bacterial and eukaryotic communities in lakes. PeerJ 2022; 10:e14378. [PMID: 36389411 PMCID: PMC9661969 DOI: 10.7717/peerj.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Lakes provide habitat for a diverse array of species and offer a wide range of ecosystem services for humanity. However, they are highly vulnerable as they are not only impacted by adverse actions directly affecting them, but also those on the surrounding environment. Improving knowledge on the processes responsible for community assembly in different biotic components will aid in the protection and restoration of lakes. Studies to date suggested a combination of deterministic (where biotic/abiotic factors act on fitness differences amongst taxa) and stochastic (where dispersal plays a larger factor in community assembly) processes are responsible for structuring biotic communities, but there is no consensus on the relative roles these processes play, and data is lacking for lakes. In the present study, we sampled different biotic components in 34 lakes located on the South Island of New Zealand. To obtain a holistic view of assembly processes in lakes we used metabarcoding to investigate bacteria in the sediment and surface waters, and eukaryotes in the sediment and two different size fractions of the water column. Physicochemical parameters were collected in parallel. Results showed that deterministic processes dominated the assembly of lake communities although the relative importance of variable and homogeneous selection differed among the biotic components. Variable selection was more important in the sediment (SSbact and SSeuks) and for the bacterioplankton (Pbact) while the assembly of the eukaryotic plankton (SPeuks, LPeuks) was driven more by homogeneous selection. The ease of human access to the lakes had a significant effect on lake communities. In particular, clade III of SAR11 and Daphnia pulex were only present in lakes with public access. This study provides insights into the distribution patterns of different biotic components and highlights the value in understanding the drivers of different biological communities within lakes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian D. Hogg
- University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Nunavut, Canada
| | | |
Collapse
|
5
|
Wang Y, Wang J, Zou X, Qu M, Li J. Groundwater depth regulates assembly processes of abundant and rare bacterial communities across arid inland river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115767. [PMID: 35982567 DOI: 10.1016/j.jenvman.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Although numerous studies on bacterial biogeographic patterns in dryland have been conducted, bacterial community assembly across arid inland river basins is unclear. Here, we assessed the ecological drivers that regulate the assembly processes of abundant (ABS) and rare (RBS) bacterial subcommunities based on 162 soil samples collected in an arid inland river basin of China. The results showed that: (1) ABS exhibited a steeper distance-decay slope, and were more strongly affected by dispersal limitation (75.5% and 84.5%), than RBS in surface and subsurface soil. RBS were predominantly controlled by variable selection (54.6% and 50.2%). (2) Soil electric conductivity played a decisive role in mediating the balance between deterministic and stochastic processes of ABS and RBS in surface soil, increasing soil electric conductivity increased the importance of deterministic process. For subsurface soil, soil available phosphorus (SAP) and soil pH drove the balance in the assembly processes of ABS and RBS, respectively. The RBS shifted from determinism to stochasticity with decreased pH, while the dominance of deterministic processes was higher in low-SAP sites. (3) Groundwater depth seasonality had substantial effects on the assembly processes of ABS and RBS, but groundwater depth seasonality affected them indirectly mainly by regulating soil properties. Collectively, our study provides robust evidence that groundwater-driven variations in soil properties mediates the community assembly process of soil bacteria in arid inland river basins. This finding is of importance for forecasting the dynamics of soil microbial community and soil process in response to current and future depleted groundwater.
Collapse
Affiliation(s)
- Yin Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Xuge Zou
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Mengjun Qu
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
6
|
Biderre‐Petit C, Charvy J, Bronner G, Chauvet M, Debroas D, Gardon H, Hennequin C, Jouan‐Dufournel I, Moné A, Monjot A, Ravet V, Vellet A, Lepère C. FreshOmics
: a manually curated and standardized –omics database for investigating freshwater microbiomes. Mol Ecol Resour 2022; 23:222-232. [DOI: 10.1111/1755-0998.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Corinne Biderre‐Petit
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Jean‐Christophe Charvy
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Gisèle Bronner
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Marina Chauvet
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Didier Debroas
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Hélène Gardon
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Claire Hennequin
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Isabelle Jouan‐Dufournel
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Anne Moné
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Arthur Monjot
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Viviane Ravet
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Agnès Vellet
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome et Environnement Université Clermont Auvergne Clermont‐Ferrand France
| |
Collapse
|