1
|
Diogo BS, Rodrigues S, Golovko O, Antunes SC. From bacteria to fish: ecotoxicological insights into sulfamethoxazole and trimethoprim. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52233-52252. [PMID: 39138731 PMCID: PMC11374860 DOI: 10.1007/s11356-024-34659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Sulfamethoxazole (SMX) and trimethoprim (TRIM) are two of the most used antibiotics in the last 50 years, to prevent and treat bacterial infections; however, the available literature about toxicity to non-target organisms is quite discrepant and incomplete. This study aims to assess the SMX and TRIM ecotoxicological effects in standard species: Aliivibrio fischeri (bioluminescence inhibition), Escherichia coli ATCC 25922 (growth inhibition), Lemna minor (growth inhibition and biochemical biomarkers), Daphnia magna (immobilization/mortality, life history traits, and biochemical biomarkers), and Danio rerio (survival, hatching, abnormalities, and biochemical biomarkers). The species tested showed different acute sensitivities to SMX (A. fischeri < D. magna < E. coli < L. minor) and TRIM (L. minor < A. fischeri < D. magna < E. coli). Overall, TRIM reveals less toxicity than SMX, except for E. coli (Ecotoxicological approach based on Antimicrobial Susceptibility Testing - EcoAST procedure). Both antibiotics affect individually (e.g., growth and survival) and sub-individually (e.g., antioxidant defenses) L. minor, D. magna, and D. rerio. This study allowed us to generate relevant data and fill gaps in the literature regarding the effects of SMX and TRIM in aquatic organisms. The here-obtained results can be used to (i) complete and re-evaluate the Safety Data Sheet to improve the assessment of environmental safety and management of national and international entities; (ii) clarify the environmental risks of these antibiotics in aquatic ecosystems reinforcing the inclusion in the 4th Watch List of priority substances to be monitored in whole inland waters by the Water Framework Directive; and (iii) combat the development of antimicrobial resistance, as well as supporting the definition of environmental measurements in the context of European One Health Action Plan. However, it is essential to continue studying these antibiotics to better understand their toxicity at ecologically relevant concentrations and their long-term effects under different climatic change scenarios.
Collapse
Affiliation(s)
- Bárbara S Diogo
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Sara C Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
First Discovery of Beta-Sitosterol as a Novel Antiviral Agent against White Spot Syndrome Virus. Int J Mol Sci 2022; 23:ijms231810448. [PMID: 36142360 PMCID: PMC9499679 DOI: 10.3390/ijms231810448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
The outbreak of white spot syndrome (WSS) is a looming challenge, due to dramatic losses to the crustacean aquaculture industry. However, at present, there are no prophylactic or therapeutic means to control this infectious viral disease. Here, we screened fifteen medicinal plants for their inhibitory activity on the white spot syndrome virus (WSSV), using red swamp crayfish (Procambarus clarkii) as a model species. The results showed that the crude extracts of Pinellia ternata (Thunb.) Breit. had the highest inhibitory effect (91.59%, 100 mg/kg) on WSSV proliferation, and its main component, beta-sitosterol, showed a much higher activity (95.79%, 50 mg/kg). Further, beta-sitosterol potently reduced (p < 0.01) viral loads and viral gene transcription levels in a concentration-dependent fashion, and significantly promoted the survival rate of WSSV-challenged crayfish (57.14%, 50 mg/kg). The co-incubation assay indicated that beta-sitosterol did not influence the infectivity of WSSV particles. Both pre- and post-treatment of beta-sitosterol exerted a significant inhibitory effect (p < 0.01) on the viral load in vivo. Mechanistically, beta-sitosterol not only interfered with the expression of viral genes (immediate early gene 1, ie1; DNA polymerase, DNApol) that are important in initiating WSSV transcription, but it also attenuated the hijacking of innate immune signaling pathways (Toll, IMD, and JAK/STAT pathways) by viral genes to block WSSV replication. Moreover, the expression of several antiviral immune, antioxidant, pro-inflammatory, and apoptosis-related genes changed significantly in beta-sitosterol-treated crayfish. Beta-sitosterol is a potent WSSV inhibitor and has the potential to be developed as an effective anti-WSSV agent against a WSS outbreak in crustacean aquaculture.
Collapse
|