1
|
Li K, Li WJ, Liang K, Li FF, Qin GQ, Liu JH, Zhang YL, Li XJ. Gut microorganisms of Locusta migratoria in various life stages and its possible influence on cellulose digestibility. mSystems 2024; 9:e0060024. [PMID: 38888356 PMCID: PMC11264664 DOI: 10.1128/msystems.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Locusta migratoria is an important phytophagous pest, and its gut microbial communities play an important role in cellulose degradation. In this study, the gut microbial and cellulose digestibility dynamics of Locusta migratoria were jointly analyzed using high-throughput sequencing and anthrone colorimetry. The results showed that the gut microbial diversity and cellulose digestibility across life stages were dynamically changing. The species richness of gut bacteria was significantly higher in eggs than in larvae and imago, the species richness and cellulose digestibility of gut bacteria were significantly higher in early larvae (first and second instars) than in late larvae (third to fifth instars), and the diversity of gut bacteria and cellulose digestibility were significantly higher in imago than in late larvae. There is a correlation between the dynamics of gut bacterial communities and cellulose digestibility. Enterobacter, Lactococcus, and Pseudomonas are the most abundant genera throughout all life stages. Six strains of highly efficient cellulolytic bacteria were screened, which were dominant gut bacteria. Carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) experiments revealed that Pseudomonas had the highest cellulase enzyme activity. This study provides a new way for the screening of cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors. IMPORTANCE Cellulose is the most abundant and cheapest renewable resource in nature, but its degradation is difficult, so finding efficient cellulose degradation methods is an urgent challenge. Locusta migratoria is a large group of agricultural pests, and the large number of microorganisms that inhabit their intestinal tracts play an important role in cellulose degradation. We analyzed the dynamics of Locusta migratoria gut microbial communities and cellulose digestibility using a combination of high-throughput sequencing technology and anthrone colorimetry. The results revealed that the gut microbial diversity and cellulose digestibility were dynamically changed at different life stages. In addition, we explored the intestinal bacterial community of Locusta migratoria across life stages and its correlation with cellulose digestibility. The dominant bacterial genera at different life stages of Locusta migratoria were uncovered and their carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) were determined. This study provides a new avenue for screening cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors.
Collapse
Affiliation(s)
- Kai Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wen-Jing Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ke Liang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Fei-Fei Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guo-Qing Qin
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jia-Hao Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yu-Long Zhang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
2
|
Du S, Yao L, Zhong B, Qin J, He S, Liu Y, Wu Z. Enhancing synthesis of ethyl lactate in rice baijiu fermentation by adding recovered granular cells. J Biosci Bioeng 2024; 137:388-395. [PMID: 38461104 DOI: 10.1016/j.jbiosc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
Ethyl lactate is the most abundant ester in semi-solid rice baijiu fermentation, affecting the flavor of baijiu to a great extent. The present study aimed to investigate the spatial distribution and formation contributor of ethyl lactate by removing the microorganisms and extracellular enzymes from the upper, middle, and lower fermentation broth during the later fermentation stage. The removal of suspended substances by centrifugation did not affect the ethyl lactate content in the top and middle fermentation broth containing free cells, enzymes, and starch particles. After day 5 of fermentation, only the lower fermentation broth containing granular cells attached to the starch could continue to accumulate lactic acid, thereby increasing the ethyl lactate content. The results showed that the chemical reactions were the main contributor to the increased ethyl lactate content at the anaphase of fermentation rather than enzymatic catalysis or microbial metabolism. Sequencing of granular cells revealed the main lactic acid producers at different fermentation stages. Lactobacillus helveticus showed the highest abundance of 94.45-95.40% on day 5, which decreased to 29.58-30.20% on day 15, while Lactobacillus acetotolerans showed the highest abundance of 47.93-49.72% at day 15. Additionally, the granular cells were recovered and used for supplementary inoculation in the next batch, which significantly increased the ethyl lactate content. This study provided a novel strategy for improving the ethyl lactate content in semi-solid baijiu fermentation.
Collapse
Affiliation(s)
- Shoujie Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liucui Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Junwei Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Songgui He
- Guangdong Jiujiang Distillery Co., Ltd., Foshan 528203, China
| | - Youqiang Liu
- Guangdong Jiujiang Distillery Co., Ltd., Foshan 528203, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Xie X, Liu Y, Chen G, Turatsinze AN, Yue L, Ye A, Zhou Q, Wang Y, Zhang M, Zhang Y, Li Z, Tran LSP, Wang R. Granular bacterial inoculant alters the rhizosphere microbiome and soil aggregate fractionation to affect phosphorus fractions and maize growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169371. [PMID: 38104809 DOI: 10.1016/j.scitotenv.2023.169371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The constraint of phosphorus (P) fixation on crop production in alkaline calcareous soils can be alleviated by applying bioinoculants. However, the impact of bacterial inoculants on this process remains inadequately understood. Here, a field study was conducted to investigate the effect of a high-concentration, cost-effective, and slow-release granular bacterial inoculant (GBI) on maize (Zea mays L.) plant growth. Additionally, we explored the effects of GBI on rhizosphere soil aggregate physicochemical properties, rhizosphere soil P fraction, and microbial communities within aggregates. The outcomes showed a considerable improvement in plant growth and P uptake upon application of the GBI. The application of GBI significantly enhanced the AP, phoD gene abundance, alkaline phosphatase activity, inorganic P fractions, and organic P fractions in large macroaggregates. Furthermore, GBI impacted soil aggregate fractionation, leading to substantial alterations in the composition of fungal and bacterial communities. Notably, key microbial taxa involved in P-cycling, such as Saccharimonadales and Mortierella, exhibited enrichment in the rhizosphere soil of plants treated with GBI. Overall, our study provides valuable insight into the impact of GBI application on microbial distributions and P fractions within aggregates of alkaline calcareous soils, crucial for fostering healthy root development and optimal crop growth potential. Subsequent research endeavors should delve into exploring the effects of diverse GBIs and specific aggregate types on P fraction and community composition across various soil profiles.
Collapse
Affiliation(s)
- Xiaofan Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin 730900, China
| | - Andéole Niyongabo Turatsinze
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yue
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Ye
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zhou
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meilan Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; General Station of Gansu Cultivated Land Quality Construction and Protection, Lanzhou 730020, China
| | - Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Ruoyu Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|