1
|
Li T, Chang X, Qiao Z, Ren G, Zhou N, Chen J, Jiang D, Liu C. Characterization and genomic analysis of Bacillus megaterium with the ability to degrade aflatoxin B 1. Front Microbiol 2024; 15:1407270. [PMID: 39171271 PMCID: PMC11335518 DOI: 10.3389/fmicb.2024.1407270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Coix seed is a good product for both medicinal and food use, which is highly susceptible to aflatoxin B1 (AFB1) contamination during field transport, storage, and processing. The aim of this study is to find microbial strains that can solve the problem of contamination of coix seed. In this study, the AFB1-degrading microorganism SX1-1 was isolated and identified as a Bacillus megaterium based on morphology, microscopy, and 16S rDNA sequencing. The optimum culture conditions for SX1-1 to degrade AFB1 were determined to be 12 h. The optimum degradation conditions were 72 h, 57°C, and an initial pH of 8.0. The highest degradation of AFB1 was observed in the fermentation supernatant of the SX1-1 strain, with a degradation rate of 97.45%. In addition, whole-genome sequencing analysis of this strain revealed the presence of a number of enzymes that could potentially degrade AFB1. Importantly, SX1-1 was able to degrade AFB1-contaminated coix seed in situ by 50.06% after co-culture. In conclusion, this strain had a high AFB1 degradation ability, and has great potential and great application as a biocontrol agent for AFB1 degradation of coix seed.
Collapse
Affiliation(s)
- Ting Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shaanxi University of Chinese Medicine, Co-Construct Collaborat Innovat Ctr Chinese Medicine Research, Xianyang, China
| | - Xiaoxi Chang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Qiao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhou
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Chen
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunsheng Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Feng J, Cao L, Du X, Zhang Y, Cong Y, He J, Zhang W. Biological Detoxification of Aflatoxin B 1 by Enterococcus faecium HB2-2. Foods 2024; 13:1887. [PMID: 38928828 PMCID: PMC11202875 DOI: 10.3390/foods13121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aflatoxin B1 (AFB1) contamination in food and feed is a global health and economic threat, necessitating the immediate development of effective strategies to mitigate its negative effects. This study focuses on the isolation and characterization of Enterococcus faecium HB2-2 (E. faecium HB2-2) as a potent AFB1-degrading microorganism, using morphological observation, biochemical profiling, and 16S rRNA sequence analysis. An incubation of E. faecium HB2-2 at 32 °C for 96 h in a pH 10 nutrient broth (NB) medium resulted in a remarkable degradation rate of 90.0% for AFB1. Furthermore, E. faecium HB2-2 demonstrated 82.9% AFB1 degradation rate in the peanut meal, reducing AFB1 levels from 105.1 to 17.9 μg/kg. The AFB1 degradation ability of E. faecium HB2-2 was found to be dependent on the fermentation supernatant. The products of AFB1 degradation by E. faecium HB2-2 were analyzed by liquid chromatography-mass spectrometry (LC-MS), and a possible degradation mechanism was proposed based on the identified degradation products. Additionally, cytotoxicity assays revealed a significant reduction in the toxicity of the degradation products compared to the parent AFB1. These findings highlight the potential of E. faecium HB2-2 as a safe and effective method for mitigating AFB1 contamination in food and feed.
Collapse
Affiliation(s)
- Jiangtao Feng
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 430023, China
| | - Ling Cao
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyan Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
| | - Yvying Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
| | - Yanxia Cong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junbo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 430023, China
| | - Weinong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.F.); (J.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 430023, China
| |
Collapse
|
3
|
Guo C, Fan L, Yang Q, Ning M, Zhang B, Ren X. Characterization and mechanism of simultaneous degradation of aflatoxin B 1 and zearalenone by an edible fungus of Agrocybe cylindracea GC-Ac2. Front Microbiol 2024; 15:1292824. [PMID: 38414775 PMCID: PMC10897045 DOI: 10.3389/fmicb.2024.1292824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Contamination with multiple mycotoxins is a major issue for global food safety and trade. This study focused on the degradation of aflatoxin B1 (AFB1) and zearalenone (ZEN) by 8 types of edible fungi belonging to 6 species, inclulding Agaricus bisporus, Agrocybe cylindracea, Cyclocybe cylindracea, Cyclocybe aegerita, Hypsizygus marmoreus and Lentinula edodes. Among these fungi, Agrocybe cylindracea strain GC-Ac2 was shown to be the most efficient in the degradation of AFB1 and ZEN. Under optimal degradation conditions (pH 6.0 and 37.4°C for 37.9 h), the degradation rate of both AFB1 and ZEN reached over 96%. Through the analysis of functional detoxification components, it was found that the removal of AFB1 and ZEN was primarily degraded by the culture supernatant of the fungus. The culture supernatant exhibited a maximum manganese peroxidase (MnP) activity of 2.37 U/mL. Interestingly, Agrocybe cylindracea strain GC-Ac2 also showed the capability to degrade other mycotoxins in laboratory-scale mushroom substrates, including 15A-deoxynivalenol, fumonisin B1, B2, B3, T-2 toxin, ochratoxin A, and sterigmatocystin. The mechanism of degradation of these mycotoxins was speculated to be catalyzed by a complex enzyme system, which include MnP and other ligninolytic enzymes. It is worth noting that Agrocybe cylindracea can degrade multiple mycotoxins and produce MnP, which is a novel and significant discovery. These results suggest that this candidate strain and its enzyme system are expected to become valuable biomaterials for the simultaneous degradation of multiple mycotoxins.
Collapse
Affiliation(s)
- Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
4
|
Boukaew S, Petlamul W, Srinuanpan S, Nooprom K, Zhang Z. Heat stability of Trichoderma asperelloides SKRU-01 culture filtrates: Potential applications for controlling fungal spoilage and AFB 1 production in peanuts. Int J Food Microbiol 2024; 409:110477. [PMID: 37976618 DOI: 10.1016/j.ijfoodmicro.2023.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
This study aimed to examine the heat stability of culture filtrates of Trichoderma asperelloides SKRU-01 (culture filtrates SKRU-01) over a temperatures range (40-121 °C) and the effects on the antifungal activity against two aflatoxin-producing strains (Aspergillus parasiticus TISTR 3276 and A. flavus PSRDC-4), aflatoxin B1 (AFB1) degradation, and the role in mycotoxin control in peanuts. The impact of SKRU-01 culture age (2-12 day-old) on both pathogenic strains revealed that the culture age of 6-12 day-old cultures exhibited no significant difference (p > 0.05) of growth inhibition for strain TISTR 3276 (81.89-82.28 %) and 4-12 day-old cultures for strain PSRDC-4 (74.87-79.06 %). The heat-treated temperatures from 40 °C to 121 °C caused no significant (p > 0.05) reduction of mycelial growth for strain TISTR 3276 (82.61 % to 79.13 %) but significant (p < 0.05) deduction for strain PSRDC-4 (75.15 % to 59.17 %). Heat treatment of the culture filtrates SKRU-01 at 60-121 °C caused the reduction on spore germination inhibition (from about 68 % to 58.16 % for strain TISTR 3276 and 51.11 % for strain PSRDC-4). These results indicate that strain TISTR 3276 exhibited greater susceptibility to culture filtrates SKRU-01 compared to strain PSRDC-4. Furthermore, the culture filtrates SKRU-01 exhibited remarkable thermal stability at 121 °C, degrading AFB1 to 63.91 %. Application of heat-stable culture filtrates SKRU-01 in peanuts demonstrated that the reduction in fungal population and AFB1 production of both pathogenic strains depended significantly (p < 0.05) on the level of heat treatment. The non-treated and 40 °C treated culture filtrates SKRU-01 could reduce AFB1 production to lower than the Standard Aflatoxin Limitation (<20 μg/kg), ensuring food safety and mitigating the health risks associated with aflatoxin exposure.
Collapse
Affiliation(s)
- Sawai Boukaew
- Center of Excellence BCG for Sustainable Development, College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand.
| | - Wanida Petlamul
- Center of Excellence BCG for Sustainable Development, College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karistsapol Nooprom
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Songkhla 90000, Thailand
| | - Zhiwei Zhang
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
5
|
Cheng S, Wu T, Zhang H, Sun Z, Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Wu X, Jia H. Mining Lactonase Gene from Aflatoxin B 1-Degrading Strain Bacillus megaterium and Degrading Properties of the Recombinant Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20762-20771. [PMID: 38103014 DOI: 10.1021/acs.jafc.3c05725] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Mycotoxins are toxic secondary metabolites mainly produced by filamentous fungal species that commonly contaminate food and feed. Aflatoxin B1 (AFB1) is extremely toxic and seriously threatens the health of humans and animals. In this work, the Bacillus megaterium HNGD-A6 was obtained and showed a 94.66% removal ability of AFB1 by employing extracellular enzymes as the degrading active substance. The degradation products were P1 (AFD1, C16H14O5) and P2 (C14H16N2O2), and their toxicity was greatly reduced compared to that of AFB1. The AttM gene was mined by BlastP comparison and successfully expressed in Escherichia coli BL21. AttM could degrade 86.78% of AFB1 at pH 8.5 and 80 °C, as well as 81.32% of ochratoxin A and 67.82% of zearalenone. The ability of AttM to degrade a wide range of toxins and its resistance to high temperatures offer the possibility of its use in food or feed applications.
Collapse
Affiliation(s)
- Sizhong Cheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Tian Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hongxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Zhongke Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Xingquan Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
6
|
Yang P, Wu W, Zhang D, Cao L, Cheng J. AFB 1 Microbial Degradation by Bacillus subtilis WJ6 and Its Degradation Mechanism Exploration Based on the Comparative Transcriptomics Approach. Metabolites 2023; 13:785. [PMID: 37512492 PMCID: PMC10385142 DOI: 10.3390/metabo13070785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin pollution poses great harm to human and animal health and causes huge economic losses. The biological detoxification method that utilizes microorganisms and their secreted enzymes to degrade aflatoxin has the advantages of strong specificity, high efficiency, and no pollution inflicted onto the environment. In this study, Bacillus subtilis WJ6 with a high efficiency in aflatoxin B1 degradation was screened and identified through molecular identification, physiological, and biochemical methods. The fermentation broth, cell-free supernatant, and cell suspension degraded 81.57%, 73.27%, and 8.39% of AFB1, respectively. The comparative transcriptomics analysis indicated that AFB1 led to 60 up-regulated genes and 31 down-regulated genes in B. subtilis WJ6. A gene ontology (GO) analysis showed that the function classifications of cell aggregation, the organizational aspect, and the structural molecule activity were all of large proportions among the up-regulated genes. The down-regulated gene expression was mainly related to the multi-organism process function under the fermentation condition. Therefore, B. subtilis WJ6 degraded AFB1 through secreted extracellular enzymes with the up-regulated genes of structural molecule activity and down-regulated genes of multi-organism process function.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wenjing Wu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Danfeng Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lili Cao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jieshun Cheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
7
|
Yuan S, Wu Y, Jin J, Tong S, Zhang L, Cai Y. Biocontrol Capabilities of Bacillus subtilis E11 against Aspergillus flavus In Vitro and for Dried Red Chili ( Capsicum annuum L.). Toxins (Basel) 2023; 15:toxins15050308. [PMID: 37235343 DOI: 10.3390/toxins15050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
As a condiment with extensive nutritional value, chili is easy to be contaminated by Aspergillus flavus (A. flavus) during field, transportation, and storage. This study aimed to solve the contamination of dried red chili caused by A. flavus by inhibiting the growth of A. flavus and detoxifying aflatoxin B1 (AFB1). In this study, Bacillus subtilis E11 (B. subtilis) screened from 63 candidate antagonistic bacteria exhibited the strongest antifungal ability, which could not only inhibit 64.27% of A. flavus but could also remove 81.34% of AFB1 at 24 h. Notably, scanning electron microscopy (SEM) showed that B. subtilis E11 cells could resist a higher concentration of AFB1, and the fermentation supernatant of B. subtilis E11 could deform the mycelia of A. flavus. After 10 days of coculture with B. subtilis E11 on dried red chili inoculated with A. flavus, the mycelia of A. flavus were almost completely inhibited, and the yield of AFB1 was significantly reduced. Our study first concentrated on the use of B. subtilis as a biocontrol agent for dried red chili, which could not only enrich the resources of microbial strains for controlling A. flavus but also could provide theoretical guidance to prolong the shelf life of dried red chili.
Collapse
Affiliation(s)
- Shenglan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yafei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Biodegradation of Aflatoxin B1 in Maize Grains and Suppression of Its Biosynthesis-Related Genes Using Endophytic Trichoderma harzianum AYM3. J Fungi (Basel) 2023; 9:jof9020209. [PMID: 36836323 PMCID: PMC9964583 DOI: 10.3390/jof9020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Aflatoxin B1 is one of the most deleterious types of mycotoxins. The application of an endophytic fungus for biodegradation or biosuppression of AFB1 production by Aspergillus flavus was investigated. About 10 endophytic fungal species, isolated from healthy maize plants, were screened for their in vitro AFs-degrading activity using coumarin medium. The highest degradation potential was recorded for Trichoderma sp. (76.8%). This endophyte was identified using the rDNA-ITS sequence as Trichoderma harzianum AYM3 and assigned an accession no. of ON203053. It caused a 65% inhibition in the growth of A. flavus AYM2 in vitro. HPLC analysis revealed that T. harzianum AYM3 had a biodegradation potential against AFB1. Co-culturing of T. harazianum AYM3 and A. flavus AYM2 on maize grains led to a significant suppression (67%) in AFB1 production. GC-MS analysis identified two AFB1-suppressing compounds, acetic acid and n-propyl acetate. Investigating effect on the transcriptional expression of five AFB1 biosynthesis-related genes in A. flavus AYM2 revealed the downregulating effects of T. harzianum AYM3 metabolites on expression of aflP and aflS genes. Using HepaRG cell line, the cytotoxicity assay indicated that T. harazianum AYM3 metabolites were safe. Based on these results, it can be concluded that T. harzianum AYM3 may be used to suppress AFB1 production in maize grains.
Collapse
|
9
|
Characteristics of Aflatoxin B 1 Degradation by Stenotrophomonas acidaminiphila and It's Combination with Black Soldier Fly Larvae. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010234. [PMID: 36676183 PMCID: PMC9865385 DOI: 10.3390/life13010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin contaminant in cereals that causes severe economic losses and serious risks to the health of humans and animals. In this paper, we investigated the characteristics of AFB1 degradation by black soldier fly larvae (BSFL) combined with commensal intestinal microorganisms. Germ-free BSFL and non-sterile BSFL were reared on peanut meal spiked with AFB1 for 10 days. The result showed that germ-free BSFL and non-sterile BSFL could achieve 31.71% and 88.72% AFB1 degradation, respectively, which indicated the important role of larvae gut microbiota in AFB1 degradation. Furthermore, twenty-five AFB1-degrading bacteria were isolated from BSFL gut, and S. acidaminiphila A2 achieved the highest AFB1 degradation, by 94%. When S. acidaminiphila A2 was re-inoculated to BSFL, the detrimental effect of AFB1 on the growth performance of BSFL was alleviated, and complete AFB1 degradation in peanut meal was obtained. In conclusion, the present study may provide a strategy to degrade AFB1 in feedstuff through bioconversion with BSFL in combination with gut-originated AFB1-degrading bacteria, while providing a sustainable insect protein and fat source to animals.
Collapse
|