1
|
Yang B, Zhang C, Guan C, Feng X, Yan D, Zhang Z, Qin Y, Xiong S, Zhang W, Cai X, Hu L. Analysis of the composition and function of rhizosphere microbial communities in plants with tobacco bacterial wilt disease and healthy plants. Microbiol Spectr 2024; 12:e0055924. [PMID: 39472002 PMCID: PMC11622736 DOI: 10.1128/spectrum.00559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/29/2024] [Indexed: 12/08/2024] Open
Abstract
To explore the factors influencing the occurrence of bacterial wilt, the differences in the physicochemical properties, microbial community composition and function between rhizosphere soil of tobacco plants with bacterial wilt and healthy plants in the tobacco planting area of Fuzhou City, Jiangxi Province were analyzed and compared. The results showed that the rhizosphere soil of diseased tobacco exhibited significantly reduced levels of exchangeable potassium, water-soluble potassium, nitrate nitrogen, total nitrogen and pH, in comparison to the rhizosphere soil of healthy plants. Conversely, the available phosphorus content of the rhizosphere soil of diseased tobacco was significantly increased. The amount of Ralstonia solanacearum in soil was negatively correlated with pH, nitrate nitrogen and total nitrogen, and positively correlated with exchangeable potassium and water-soluble potassium. A total of 43 genera were significantly different between the two groups of rhizosphere soil, of which 24 genera were enriched in the rhizosphere of healthy plants, including Ideonella, Rhizophagus, Rhizobacter, Altererythrobacter and Ignavibacterium associated with plant disease resistance, Thermodesulfovibrio, Syntrophorhabdus, Syntrophus, Chlorobium, Hydrogenophaga and Limnohabitans associated with soil sulfur metabolism, as well as Ignavibacterium, Ideonella, Derxia and Azohydromonas associated with soil nitrogen cycling. Kyoto Encyclopedia of Genes and Genomes functional analysis of the unigenes obtained by metagenomic sequencing also showed that the differential unigenes were significantly enriched in the sulfur metabolism pathway. In addition, the rhizosphere soil of diseased tobacco plants exhibited a higher abundance of antibiotic-producing actinomycetes and an increased load of antibiotic resistance genes compared to that of healthy plants. In general, lower pH value, less content of nitrate nitrogen and total nitrogen, and more content of exchangeable potassium and water-soluble potassium could contribute to onset of bacterial wilt. Twenty-four genera, including Ideonella and Rhizophagus, may construct a healthy microecological network in the rhizosphere of tobacco plants. All these factors may interact with each other to control the development of bacterial wilt. This complicated interaction network needs to be explored further.IMPORTANCEPrevious studies have mainly focused on the differences in microbial species composition between healthy and diseased soils, but the differences in microbial community functions between two types of soil have not been well characterized. In this study, soil samples in diseased and healthy plant rhizospheres were collected for physicochemical property testing and metagenomic sequencing. We focused on analyzing the differences in physicochemical properties and microbial community functions between these soils, as well as the correlation between these factors and pathogen content. The results of this study provide a theoretical basis for further understanding the occurrence of tobacco bacterial wilt in the field.
Collapse
Affiliation(s)
- Bingye Yang
- Zhengzhou Tobacco
Research Institute of CNTC,
Zhengzhou, China
| | | | | | - Xiaohu Feng
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Ding Yan
- Procurement Center,
Shanghai Tobacco Group Co., Ltd.,
Shanghai, China
| | - Zhigao Zhang
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Yanmin Qin
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Shubin Xiong
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Wenmei Zhang
- Fuzhou Branch of
Jiangxi Provincial Tobacco Company,
Fuzhou, Jiangxi, China
| | - Xianjie Cai
- Procurement Center,
Shanghai Tobacco Group Co., Ltd.,
Shanghai, China
| | - Liwei Hu
- Zhengzhou Tobacco
Research Institute of CNTC,
Zhengzhou, China
| |
Collapse
|
2
|
Xue D, Wang Y, Sun H, Fu L, Zhu L, Liu J, Zhi Z, He J, Wang W, Wu C. Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon. PLANTS (BASEL, SWITZERLAND) 2024; 13:1787. [PMID: 38999627 PMCID: PMC11244005 DOI: 10.3390/plants13131787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
In this study, the effects of soil conditioners on the growth and development of melons and the rhizosphere soil environment were explored. The optimal amount of added soil conditioner was screened to solve the practical production problems of high-quality and high-yield thin-skinned melon. The melon variety "Da Shetou" was used as the material. Under the conditions of conventional fertilization and cultivation technology management, different soil conditioners were set up for potted melons. The effects of Pastoral soil (CK), 95% Pastoral soil + 5% volcanic ash soil conditioner (KT1), 85% Pastoral soil + 15% volcanic ash soil conditioner (KT2), 75% Pastoral soil + 25% volcanic ash soil conditioner (KT3), 65% Pastoral soil + 35% volcanic ash soil conditioner (KT4), and 55% Pastoral soil + 45% volcanic ash soil conditioner (KT5) on melon yield, quality, and rhizosphere soil characteristics were investigated. The soil microbial community was analyzed using Illumina MiSeq technology. Compared to CK, KT1, KT3, KT4, and KT5, the KT2 treatment could improve the single fruit yield of melon, increasing it by 4.35%, 2.48%, 2.31%, 5.92%, and 2.92%. Meanwhile, the highest contents of soluble protein, soluble solid, and soluble sugar in the KT2 treatment were 1.89 mg·100 g-1, 16.35%, and 46.44 mg·g-1, which were significantly higher than those in the control treatment. The contents of organic matter, total nitrogen, alkali-soluble nitrogen, nitrate nitrogen, ammonium nitrogen, available potassium, and available phosphorus in melon rhizosphere soil were the highest in the KT2 treatment. Through Alpha diversity analysis, it was found that the Chao1 index, Shannon index, and ACE index were significantly higher in the KT1 treatment than in the control, while, among all groups, the Simpson index and coverage were not significantly different. The dominant bacteria in the six treated samples were mainly Actinobacteriota, Proteobacteria, Cyanobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Myxomycota, Firmicutes, Gemmatimonadota, Verrucomicrobia, and Planctomycetes, which accounted for 96.59~97.63% of the relative abundance of all bacterial groups. Through redundancy analysis (RDA), it was found that the organic matter, electrical conductivity, available phosphorus, and nitrate nitrogen of melon rhizosphere soil were the dominant factors of bacterial community change at the dominant genus level. In summary, 15% ash soil conditioner applied on melon was the selected treatment to provide a theoretical reference for the application of soil conditioner in facility cultivation.
Collapse
Affiliation(s)
- Dongxu Xue
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Yangyang Wang
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Hong Sun
- College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
| | - Lina Fu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Lihe Zhu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Jiaqi Liu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Zhenyi Zhi
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Jiayi He
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Wei Wang
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| | - Chunyan Wu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (D.X.); (Y.W.); (L.F.); (L.Z.); (J.L.); (Z.Z.); (J.H.)
| |
Collapse
|
3
|
Han Z, Zhang Y, Di C, Bi H, Pan K. Application of Rice Straw Inhibits Clubroot Disease by Regulating the Microbial Community in Soil. Microorganisms 2024; 12:717. [PMID: 38674661 PMCID: PMC11051980 DOI: 10.3390/microorganisms12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Straw return is an effective agricultural management practice for alleviating soil sickness, but only a few studies have focused on the incorporation of straw with deep plowing and rotary tillage practices in vegetable production. To determine the effects of rice straw return on Chinese cabbage clubroot, a field experiment for three consecutive years in the same area was performed. Soil microbial high-throughput sequencing, quantitative real-time polymerase chain reaction (PCR) and other methods were used to detect Chinese cabbage plant growth, clubroot occurrence, soil chemical properties and soil microbial diversity and abundance. The results showed that straw addition could significantly reduce the clubroot disease incidence. Through Illumina Miseq sequencing, the diversity of the fungi decreased obviously. The relative abundance of the phyla Proteobacteria and Firmicutes was strikingly reduced, while that of Chloroflexi was significantly increased. Redundancy analysis suggests that soil properties may also affect the soil microbial composition; changes in the microbial structure of bacteria and fungi were associated with the available phosphorus. In conclusion, the continuous addition of rice straw can promote the growth and control the occurrence of clubroot, which is closely related to the microbial composition, and the inhibition effect is proportional to the age of addition.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.H.); (H.B.)
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Program, Harbin 150086, China
| | - Yiping Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (C.D.)
| | - Chengqian Di
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (C.D.)
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Z.H.); (H.B.)
| | - Kai Pan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (C.D.)
| |
Collapse
|
4
|
Todorović I, Moënne-Loccoz Y, Raičević V, Jovičić-Petrović J, Muller D. Microbial diversity in soils suppressive to Fusarium diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1228749. [PMID: 38111879 PMCID: PMC10726057 DOI: 10.3389/fpls.2023.1228749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Fusarium species are cosmopolitan soil phytopathogens from the division Ascomycota, which produce mycotoxins and cause significant economic losses of crop plants. However, soils suppressive to Fusarium diseases are known to occur, and recent knowledge on microbial diversity in these soils has shed new lights on phytoprotection effects. In this review, we synthesize current knowledge on soils suppressive to Fusarium diseases and the role of their rhizosphere microbiota in phytoprotection. This is an important issue, as disease does not develop significantly in suppressive soils even though pathogenic Fusarium and susceptible host plant are present, and weather conditions are suitable for disease. Soils suppressive to Fusarium diseases are documented in different regions of the world. They contain biocontrol microorganisms, which act by inducing plants' resistance to the pathogen, competing with or inhibiting the pathogen, or parasitizing the pathogen. In particular, some of the Bacillus, Pseudomonas, Paenibacillus and Streptomyces species are involved in plant protection from Fusarium diseases. Besides specific bacterial populations involved in disease suppression, next-generation sequencing and ecological networks have largely contributed to the understanding of microbial communities in soils suppressive or not to Fusarium diseases, revealing different microbial community patterns and differences for a notable number of taxa, according to the Fusarium pathosystem, the host plant and the origin of the soil. Agricultural practices can significantly influence soil suppressiveness to Fusarium diseases by influencing soil microbiota ecology. Research on microbial modes of action and diversity in suppressive soils should help guide the development of effective farming practices for Fusarium disease management in sustainable agriculture.
Collapse
Affiliation(s)
- Irena Todorović
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | | | - Daniel Muller
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
5
|
He Y, Qian J, Li Y, Wang P, Lu B, Liu Y, Zhang Y, Liu F. Responses of Phragmites communis and its rhizosphere bacteria to different exposure sequences of molybdenum disulfide and levofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122273. [PMID: 37506800 DOI: 10.1016/j.envpol.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effect of the molybdenum disulfide (MoS2)/levofloxacin (LVF) co-exposure was explored on Phragmites communis and rhizosphere soil bacterial communities. The sequence of MoS2/LVF exposure and the different MoS2 dosages (10 mg/kg and 100 mg/kg) contributed to different degrees of effect on the plant after 42 days of exposure. The treatment with priority addition of low dosage MoS2 significantly ameliorated P. communis growth, with root length growing up to 532.22 ± 46.29 cm compared to the sole LVF stress (200.04 ± 29.13 cm). Besides, MoS2 served as an alleviator and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in P. communis under LVF stress, and activated bacteria in rhizosphere soil. These rhizosphere soil microbes assisted in mitigating toxic pollution in the soil and inducing plant resistance to external stress, such as bacteria genera Bacillus, Microbacterium, Flavihumibacter and altererythrobacter. Potential functional profiling of bacterial community indicated the addition of MoS2 contributed to relieve the reduction in functional genes associated with amino acid metabolism and the debilitation of gram_negative and aerobic phenotypic traits caused by LVF stress. This finding reveals the effect of different exposure sequences of MoS2 nanoparticles and antibiotic for plant-soil systems.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Yuanyuan Li
- China Machinery International Engineer Design&Research Institute Co.Ltd.(CMIE) East China Regional Center, 2 Zidong Road, Nanjing, 210046, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Feng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|