1
|
Charamba LVC, Houska T, Kaiser K, Knorr KH, Krüger S, Krause T, Chen H, Krám P, Hruška J, Kalbitz K. Tracing sources of dissolved organic matter along the terrestrial-aquatic continuum in the Ore Mountains, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173807. [PMID: 38852873 DOI: 10.1016/j.scitotenv.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
There is growing concern about the rising levels of dissolved organic matter (DOM) in surface waters across the Northern hemisphere. However, only limited research has been conducted to unveil its precise origin. Compositional changes along terrestrial-aquatic pathways can help determine the terrestrial sources of DOM in streams. Stream water, soil water and soil horizons were sampled at four sites representing typical settings within a forested catchment in the Ore Mountains (Erzgebirge, Germany) from winter 2020 to spring 2022. The samples were analyzed using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The resulting data were successfully subjected to semi-automatic processing of the molecular composition of DOM, reaching a percentage of identified peaks up to 98 %. Principal component analysis (PCA) and cluster analyses were carried out to identify distinct differences between DOM from the potential sources and in the streams. According to the PCA, organic soil horizons, soil water, and stream water samples could be clearly distinguished. Cluster analysis revealed that soil water DOM at all depths of Peats and deeper horizons of the Peaty Gleysols contributed the most to DOM in the stream section dominated by organic soils. In areas dominated by mineral soils, stream DOM resembled the DOM from the deeper mineral horizons of Cambisols and Podzols. Overall, our results suggested that most of the DOM exported from the catchment was derived from deeper mineral soil horizons, with little contribution of DOM derived from organic soils. Therefore, DOM fingerprint analysis of in-situ soil water proved to be a promising approach for tracing back the main sources of stream water DOM.
Collapse
Affiliation(s)
- Livia V C Charamba
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany.
| | - Tobias Houska
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany; Department of Landscape Ecology and Resource Management, University of Gießen, Gießen, Germany
| | - Klaus Kaiser
- Soil Science and Soil Protection, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| | - Klaus-Holger Knorr
- Institute for Landscape Ecology, Ecohydrology and Biogeochemistry Group, University of Münster, Münster, Germany
| | - Stephan Krüger
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany
| | - Tobias Krause
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, United States
| | - Pavel Krám
- Czech Geological Survey, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Hruška
- Czech Geological Survey, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karsten Kalbitz
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany
| |
Collapse
|
2
|
Zhang B, Zhu S, Li J, Fu F, Guo L, Li J, Zhang Y, Liu Y, Chen G, Zhang G. Elevational distribution patterns and drivers factors of fungal community diversity at different soil depths in the Abies georgei var. smithii forests on Sygera Mountains, southeastern Tibet, China. Front Microbiol 2024; 15:1444260. [PMID: 39184024 PMCID: PMC11342059 DOI: 10.3389/fmicb.2024.1444260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Soil fungal communities play a crucial role in maintaining the ecological functions of alpine forest soil ecosystems. However, it is currently unclear how the distribution patterns of fungal communities in different soil layers of alpine forests will change along the elevational gradients. Material and methods Therefore, Illumina MiSeq sequencing technology was employed to investigate fungal communities in three soil layers (0-10, 10-20, and 20-30 cm) along an elevational gradient (3500 m to 4300 m) at Sygera Mountains, located in Bayi District, Nyingchi City, Tibet. Results and discussion The results indicated that: 1) Soil depth had a greater impact on fungal diversity than elevation, demonstrating a significant reduction in fungal diversity with increased soil depth but showing no significant difference with elevation changes in all soil layers. Within the 0-10 cm soil layer, both Basidiomycota and Ascomycota co-dominate the microbial community. However, as the soil depth increases to 10-20 and 20-30 cm soil layers, the Basidiomycota predominantly dominates. 2) Deterministic processes were dominant in the assembly mechanism of the 0-10 cm fungal community and remained unchanged with increasing elevation. By contrast, the assembly mechanisms of the 10-20 and 20-30 cm fungal communities shifted from deterministic to stochastic processes as elevation increased. 3) The network complexity of the 0-10 cm fungal community gradually increased with elevation, while that of the 10-20 and 20-30 cm fungal communities exhibited a decreasing trend. Compared to the 0-10 cm soil layer, more changes in the relative abundance of fungal biomarkers occurred in the 10-20 and 20-30 cm soil layers, indicating that the fungal communities at these depths are more sensitive to climate changes. Among the key factors driving these alterations, soil temperature and moisture soil water content stood out as pivotal in shaping the assembly mechanisms and network complexity of fungal communities. This study contributes to the understanding of soil fungal community patterns and drivers along elevational gradients in alpine ecosystems and provides important scientific evidence for predicting the functional responses of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yuzhuo Liu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Ganggang Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Srivastava S, Bhattacharjee A, Dubey S, Sharma S. Bacterial exopolysaccharide amendment improves the shelf life and functional efficacy of bioinoculant under salinity stress. J Appl Microbiol 2024; 135:lxae166. [PMID: 38960398 DOI: 10.1093/jambio/lxae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
AIM Bacterial exopolysaccharides (EPS) possess numerous properties beneficial for the growth of microbes and plants under hostile conditions. The study aimed to develop a bioformulation with bacterial EPS to enhance the bioinoculant's shelf life and functional efficacy under salinity stress. METHODS AND RESULTS High EPS-producing and salt-tolerant bacterial strain (Bacillus haynessi SD2) exhibiting auxin-production, phosphate-solubilization, and biofilm-forming ability, was selected. EPS-based bioformulation of SD2 improved the growth of three legumes under salt stress, from which pigeonpea was selected for further experiments. SD2 improved the growth and lowered the accumulation of stress markers in plants under salt stress. Bioformulations with varying EPS concentrations (1% and 2%) were stored for 6 months at 4°C, 30°C, and 37°C to assess their shelf life and functional efficacy. The shelf life and efficacy of EPS-based bioformulation were sustained even after 6 months of storage at high temperature, enhancing pigeonpea growth under stress in both control and natural conditions. However, the efficacy of non EPS-based bioformulation declined following four months of storage. The bioformulation (with 1% EPS) modulated bacterial abundance in the plant's rhizosphere under stress conditions. CONCLUSION The study brings forth a new strategy for developing next-generation bioformulations with higher shelf life and efficacy for salinity stress management in pigeonpea.
Collapse
Affiliation(s)
- Sonal Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Nutaratat P, Arigul T, Srisuk N, Kruasuwan W. Microbiome sequencing revealed the abundance of uncultured bacteria in the Phatthalung sago palm-growing soil. PLoS One 2024; 19:e0299251. [PMID: 38442103 PMCID: PMC10914256 DOI: 10.1371/journal.pone.0299251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Environmental variations have been observed to influence bacterial community composition, thereby impacting biological activities in the soil. Together, the information on bacterial functional groups in Phatthalung sago palm-growing soils remains limited. In this work, the core soil bacterial community in the Phatthalung sago palm-growing areas during both the summer and rainy seasons was examined using V3-V4 amplicon sequencing. Our findings demonstrated that the seasons had no significant effects on the alpha diversity, but the beta diversity of the community was influenced by seasonal variations. The bacteria in the phyla Acidobacteriota, Actinobacteriota, Chloroflexi, Methylomirabilota, Planctomycetota, and Proteobacteria were predominantly identified across the soil samples. Among these, 26 genera were classified as a core microbiome, mostly belonging to uncultured bacteria. Gene functions related to photorespiration and methanogenesis were enriched in both seasons. Genes related to aerobic chemoheterotrophy metabolisms and nitrogen fixation were more abundant in the rainy season soils, while, human pathogen pneumonia-related genes were overrepresented in the summer season. The investigation not only provides into the bacterial composition inherent to the sago palm-cultivated soil but also the gene functions during the shift in seasons.
Collapse
Affiliation(s)
- Pumin Nutaratat
- Department of Biology, Faculty of Science and Digital Innovation, Thaksin University, Pa Phayom, Phatthalung, Thailand
- Microbial Technology for Agriculture, Food and Environment Research Center, Faculty of Science and Digital Innovation, Thaksin University, Pa Phayom, Phatthalung, Thailand
| | - Tantip Arigul
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, Thailand
| | - Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Yuan Y, Li Q, Deng J, Ma X, Liao X, Zou J, Li G, Chen G, Dai H. Rainwater extracting characteristics and its potential impact on DBPs generation: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167282. [PMID: 37769737 DOI: 10.1016/j.scitotenv.2023.167282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Frequent extreme precipitation events due to global warming can lead to large amounts of pollutants entering source water bodies via surface runoff and wet deposition, thus posing a threat to water supply security. In order to better understand the source characteristics and leaching mechanisms of rainwater dissolved organic matter (DOM), as well as its disinfection by-products formation potential (DBPsFP) during disinfection processes, rainwater samples were collected and extracting experiments were conducted. Three components were identified in rainwater through Parallel factor (PARAFAC) analysis, which were microbial humic-like component C1 (63.1 %), protein (tryptophan-like) component C2 (28.9 %), marine or terrestrial humic-like component C3 (8.1 %). The average molecular weight of rainwater fractions was ordered: hydrophobic neutral (HON) < hydrophobic bases (HOB) < hydrophobic acidic (HOA) < hydrophilic (HIS). The HOA and HON fractions of rainwater were the dominant precursors of trihalomethanes (THMs), while the rainwater HON fraction and hydrophilic fraction were the main precursor of haloacetic acids (HAAs) and trihloroacetonitrile (TCAN), respectively. Subsoil extracts had a higher concentration of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) than topsoil extracts. Partial least squares path modeling (PLS-PM) demonstrated that the extraction temperature was the dominant factor affecting the abundance of DOM in the topsoil extracts (R2 = 0.28), while the extraction time accounted more for the abundance of fluorescence substance and physicochemical indices in the subsoil extracts (R2 = 0.23 and 0.32, respectively). These results provide key information for controlling the impacts of global warming, in particular the risk of water sources being heavily contaminated by request rainfalls.
Collapse
Affiliation(s)
- Yujin Yuan
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaobin Liao
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Huilin Dai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| |
Collapse
|