1
|
Galisteo C, Puente-Sánchez F, de la Haba RR, Bertilsson S, Sánchez-Porro C, Ventosa A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175497. [PMID: 39151617 DOI: 10.1016/j.scitotenv.2024.175497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Saline soils and their microbial communities have recently been studied in response to ongoing desertification of agricultural soils caused by anthropogenic impacts and climate change. Here we describe the prokaryotic microbiota of hypersaline soils in the Odiel Saltmarshes Natural Area of Southwest Spain. This region has been strongly affected by mining and industrial activity and feature high levels of certain heavy metals. We sequenced 18 shotgun metagenomes through Illumina NovaSeq from samples obtained from three different areas in 2020 and 2021. Taxogenomic analyses demonstrate that these soils harbored equal proportions of archaea and bacteria, with Methanobacteriota, Pseudomonadota, Bacteroidota, Gemmatimonadota, and Balneolota as most abundant phyla. Functions related to the transport of heavy metal outside the cytoplasm are among the most relevant features of the community (i.e., ZntA and CopA enzymes). They seem to be indispensable to avoid the increase of zinc and copper concentration inside the cell. Besides, the archaeal phylum Methanobacteriota is the main arsenic detoxifier within the microbiota although arsenic related genes are widely distributed in the community. Regarding the osmoregulation strategies, "salt-out" mechanism was identified in part of the bacterial population, whereas "salt-in" mechanism was present in both domains, Bacteria and Archaea. De novo biosynthesis of two of the most universal compatible solutes was detected, with predominance of glycine betaine biosynthesis (betAB genes) over ectoine (ectABC genes). Furthermore, doeABCD gene cluster related to the use of ectoine as carbon and energy source was solely identified in Pseudomonadota and Methanobacteriota.
Collapse
Affiliation(s)
- Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
García-Roldán A, de la Haba RR, Sánchez-Porro C, Ventosa A. 'Altruistic' cooperation among the prokaryotic community of Atlantic salterns assessed by metagenomics. Microbiol Res 2024; 288:127869. [PMID: 39154602 DOI: 10.1016/j.micres.2024.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Hypersaline environments are extreme habitats with a limited prokaryotic diversity, mainly restricted to halophilic or halotolerant archaeal and bacterial taxa adapted to highly saline conditions. This study attempts to analyze the taxonomic and functional diversity of the prokaryotes that inhabit a solar saltern located at the Atlantic Coast, in Isla Cristina (Huelva, Southwest Spain), and the influence of salinity on the diversity and metabolic potential of these prokaryotic communities, as well as the interactions and cooperation among the individuals within that community. Brine samples were obtained from different saltern ponds, with a salinity range between 19.5 % and 39 % (w/v). Total prokaryotic DNA was sequenced using the Illumina shotgun metagenomic strategy and the raw sequence data were analyzed using supercomputing services following the MetaWRAP and SqueezeMeta protocols. The most abundant phyla at moderate salinities (19.5-22 % [w/v]) were Methanobacteriota (formerly "Euryarchaeota"), Pseudomonadota and Bacteroidota, followed by Balneolota and Actinomycetota and Uroviricota in smaller proportions, while at high salinities (36-39 % [w/v]) the most abundant phylum was Methanobacteriota, followed by Bacteroidota. The most abundant genera at intermediate salinities were Halorubrum and the bacterial genus Spiribacter, while the haloarchaeal genera Halorubrum, Halonotius, and Haloquadratum were the main representatives at high salinities. A total of 65 MAGs were reconstructed from the metagenomic datasets and different functions and pathways were identified in them, allowing to find key taxa in the prokaryotic community able to synthesize and supply essential compounds, such as biotin, and precursors of other bioactive molecules, like β-carotene, and bacterioruberin, to other dwellers in this habitat, lacking the required enzymatic machinery to produce them. This work shed light on the ecology of aquatic hypersaline environments, such as the Atlantic Coast salterns, and on the dynamics and factors affecting the microbial populations under such extreme conditions.
Collapse
Affiliation(s)
- Alicia García-Roldán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
3
|
Ortega R, Miralles I, Domene MA, Meca D, Del Moral F. Ecological practices increase soil fertility and microbial diversity under intensive farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176777. [PMID: 39378938 DOI: 10.1016/j.scitotenv.2024.176777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Intensive farming offers a potential solution to feed the growing population due to its high productivity. Conventional management (CO) based on inorganic fertilization practices degrades soil quality, but restorative practices including ecological intensification (EI) and organic management results in maintaining soil quality without compromising productivity. In this paper, two different management systems were evaluated: CO, based on inorganic fertilization, and EI, focused on providing organic nutrients to soils to support crops. EI increased soil fertility, together with higher alpha diversity indices, more differentially abundant amplicon sequence variant (ASVs) (247 EI vs. 165 CO) and indicator taxa (60 EI vs. 32 CO). Distinct bacterial taxa were associated with the different management systems, revealing their roles in soil processes and nutrient availability. In the CO treatment, indicator genera such as Nitrospira and Desulfarculaceae were linked to N fertilization and nitrite oxidation, while RB41 was associated with phosphorus availability. Ammoniphilus, PAUC26f, and BSV26 were also indicators of CO management. Conversely, EI treatment promoted bacteria involved in organic matter decomposition and nutrient cycling, such as Halomonas, Chryseolinea and Rhodobacteraceae. Gemmatimonas, Steroidobacter, Altererythrobacter, Acidibacter and Anseongella contribute to carbon and nitrogen cycling. Burkholderiaceae and Rhodopirellula play roles in phosphate solubilization and organic P mineralization, respectively. Numerous taxa with plant growth-promoting (PGP) attributes, such as BIrii41, Pseudomonas, and Lysobacter, were also identified as indicators of the EI treatment. EI associated bacteria were positively correlated with soil organic carbon contents, nitrates, and exchangeable bases, while negatively correlated with CO bacteria. A distance-based multivariate multiple regression (DistLM) demonstrated a strong relationship (r2 = 0.78) between soil physicochemical variables and bacterial community structure, with SOC explaining the most variations in the model. Other significant parameters included potassium (K), electrical conductivity (EC), and nitrates. The results suggest that EI promotes more sustainable soils in terms of fertility and microbial diversity.
Collapse
Affiliation(s)
- Raúl Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain..
| | - Isabel Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - Miguel Angel Domene
- Cajamar Research Station, Cajamar Foundation, Grupo Cooperativo Cajamar, Paraje Las Palmerillas 25, 04710 El Ejido, Almería, Spain
| | - David Meca
- Cajamar Research Station, Cajamar Foundation, Grupo Cooperativo Cajamar, Paraje Las Palmerillas 25, 04710 El Ejido, Almería, Spain
| | - Fernando Del Moral
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| |
Collapse
|
4
|
Soria R, Ortega R, Valiente N, Rodríguez-Berbel N, Lucas-Borja ME, Miralles I. Monitoring of indicators and bacterial succession in organic-amended technosols for the restoration of semiarid ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176302. [PMID: 39293770 DOI: 10.1016/j.scitotenv.2024.176302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Restoration of mining sites is essential to ensure ecosystem services and biodiversity. One restoration strategy employed in arid and semi-arid zones is the use of organic amendments to establishment technosols. However, it is necessary to monitor the restoration progress in order to select appropriate amendments. This study monitored the effects of compost gardening, greenhouse horticulture and stabilized sewage sludge, and their blends. We focused on soil physical and chemical indicators and bacterial community structure and diversity during the 30 months after application. Organic amendments increased total organic carbon and nitrogen within six months, staying elevated compared to natural soils over 30 months. Electrical conductivity rose then stabilized, the pH slightly decreased but stayed alkaline, and water holding capacity improved in treated technosols. Bacterial diversity increased in amended technosols compared to control. Alpha diversity varied with treatment and time, peaking at 18 months. Technosols with plant compost showed reduced bacterial richness at 30 months, while those with sewage sludge and its mixtures maintained it. The bacterial community analysis showed significant differences among treatments and times, highlighting dominant phyla like Proteobacteria and Bacteroidetes. PCoA analysis showed clear separation of bacterial communities from treated, natural, and control soils, with notable differences between plant and sludge treatments. Soil variables such as TOC, TN, EC and water holding capacity explained >82 % of the variation in bacterial communities. Eighty-three indicator taxa were identified that explained the differences between the microbial communities of treated and untreated soils, highlighting the importance of taxa such as Pelagibacterium spp., Roseivirga spp. and Cellvibrio spp. in preserving soil health. In short, organic amendments improve soil properties and promote the diversity and stability of beneficial microbial communities in semi-arid mined soils, underlining their crucial role in the restoration and long-term maintenance of degraded soils.
Collapse
Affiliation(s)
- Rocío Soria
- Universidad University of Almería, Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), E-04120 Almería, Spain.
| | - Raúl Ortega
- Universidad University of Almería, Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), E-04120 Almería, Spain
| | - Nicolás Valiente
- Department of Science and Agroforestry Technology and Genetics, University of Castilla-La Mancha, E-02071 Albacete, Spain
| | - Natalia Rodríguez-Berbel
- Department of Ecology and Ecosystem Management, TUM School of Life Science Weihenstephan, Chair of Soil Science, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany; Research Unit Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Manuel Esteban Lucas-Borja
- Department of Science and Agroforestry Technology and Genetics, University of Castilla-La Mancha, E-02071 Albacete, Spain
| | - Isabel Miralles
- Universidad University of Almería, Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), E-04120 Almería, Spain.
| |
Collapse
|
5
|
Galisteo C, de la Haba RR, Ventosa A, Sánchez-Porro C. The Hypersaline Soils of the Odiel Saltmarshes Natural Area as a Source for Uncovering a New Taxon: Pseudidiomarina terrestris sp. nov. Microorganisms 2024; 12:375. [PMID: 38399779 PMCID: PMC10893183 DOI: 10.3390/microorganisms12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The hypersaline soils of the Odiel Saltmarshes Natural Area are an extreme environment with high levels of some heavy metals; however, it is a relevant source of prokaryotic diversity that we aim to explore. In this study, six strains related to the halophilic genus Pseudidiomarina were isolated from this habitat. The phylogenetic study based on the 16S rRNA gene sequence and the fingerprinting analysis suggested that they constituted a single new species within the genus Pseudidiomarina. Comparative genomic analysis based on the OGRIs indices and the phylogeny inferred from the core genome were performed considering all the members of the family Idiomarinaceae. Additionally, a completed phenotypic characterization, as well as the fatty acid profile, were also carried out. Due to the characteristics of the habitat, genomic functions related to salinity and high heavy metal concentrations were studied, along with the global metabolism of the six isolates. Last, the ecological distribution of the isolates was studied in different hypersaline environments by genome recruitment. To sum up, the six strains constitute a new species within the genus Pseudidiomarina, for which the name Pseudidiomarina terrestris sp. nov. is proposed. The low abundance in all the studied hypersaline habitats indicates that it belongs to the rare biosphere in these habitats. In silico genome functional analysis suggests the presence of heavy metal transporters and pathways for nitrate reduction and nitrogen assimilation in low availability, among other metabolic traits.
Collapse
Affiliation(s)
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (C.G.); (R.R.d.l.H.); (A.V.)
| |
Collapse
|
6
|
Tichy J, Waldherr M, Ortbauer M, Graf A, Sipek B, Jembrih-Simbuerger D, Sterflinger K, Piñar G. Pretty in pink? Complementary strategies for analysing pink biofilms on historical buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166737. [PMID: 37659529 DOI: 10.1016/j.scitotenv.2023.166737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Salt-weathering is a deterioration mechanism affecting building materials that results from repetitive cycles of salt crystallisation-dissolution in the porous mineral network under changing environmental conditions, causing damage to surfaces. However, an additional biodeterioration phenomenon frequently associated with salt efflorescence is the appearance of coloured biofilms, comprising halotolerant/halophilic microorganisms, containing carotenoid pigments that cause pinkish patinas. In this work, two Austrian historical salt-weathered buildings showing pink biofilms, the St. Virgil's Chapel and the Charterhouse Mauerbach, were investigated. Substrate chemistry (salt concentration/composition) was analysed by ion chromatography and X-ray diffraction to correlate these parameters with the associated microorganisms. Microbiomes were analysed by sequencing full-length 16S rRNA amplicons using Nanopore technology. Data demonstrates that microbiomes are not only influenced by salt concentration, but also by its chemical composition. The chapel showed a high overall halite (NaCl) concentration, but the factor influencing the microbiome was the presence/absence of K+. The K+ areas showed a dominance of Aliifodinibius and Salinisphaera species, capable of tolerating high salt concentrations through the "salt-in" strategy by transporting K+ into cells. Conversely, areas without K+ showed a community shift towards Halomonas species, which favour the synthesis of compatible solutes for salt tolerance. In the charterhouse, the main salts were sulphates. In areas with low concentrations, Rubrobacter species dominated, while in areas with high concentrations, Haloechinothrix species did. Among archaea, Haloccoccus species were dominant in all samples, except at high sulphate concentrations, where Halalkalicoccus prevailed. Finally, the biological pigments visible in both buildings were analysed by Raman spectroscopy, showing the same spectra in all areas investigated, regardless of the building and the microbiomes, demonstrating the presence of carotenoids in the pink biofilms. Comprehensive information on the factors affecting the microbiome associated with salt-weathered buildings should provide the basis for selecting the most appropriate desalination treatment to remove both salt efflorescence and associated biofilms.
Collapse
Affiliation(s)
- Johannes Tichy
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria.
| | - Monika Waldherr
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Martin Ortbauer
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Alexandra Graf
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Beate Sipek
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Dubravka Jembrih-Simbuerger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Guadalupe Piñar
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| |
Collapse
|
7
|
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A. A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 2023; 14:1293707. [PMID: 38045027 PMCID: PMC10690426 DOI: 10.3389/fmicb.2023.1293707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - David R. Arahal
- Departament of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Kim HW, Kim NK, Phillips APR, Parker DA, Liu P, Whitaker RJ, Rao CV, Mackie RI. Genomic insight and physiological characterization of thermoacidophilic Alicyclobacillus isolated from Yellowstone National Park. Front Microbiol 2023; 14:1232587. [PMID: 37822751 PMCID: PMC10562698 DOI: 10.3389/fmicb.2023.1232587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Alicyclobacillus has been isolated from extreme environments such as hot springs, volcanoes, as well as pasteurized acidic beverages, because it can tolerate extreme temperatures and acidity. In our previous study, Alicyclobacillus was isolated during the enrichment of methane oxidizing bacteria from Yellowstone Hot Spring samples. Methods Physiological characterization and genomic exploration of two new Alicyclobacillus isolates, AL01A and AL05G, are the main focus of this study to identify their potential relationships with a thermoacidophilic methanotroph (Methylacidiphilum) isolated from the same hot spring sediments. Results and discussion In the present study, both Alicyclobacillus isolates showed optimal growth at pH 3.5 and 55°C, and contain ω-alicyclic fatty acids as a major lipid (ca. 60%) in the bacterial membrane. Genomic analysis of these strains revealed specific genes and pathways that the methanotroph genome does not have in the intermediary carbon metabolism pathway such as serC (phosphoserine aminotransferase), comA (phosphosulfolactate synthase), and DAK (glycerone kinase). Both Alicyclobacillus strains were also found to contain transporter systems for extracellular sulfate (ABC transporter), suggesting that they could play an important role in sulfur metabolism in this extreme environment. Genomic analysis of vitamin metabolism revealed Alicyclobacillus and Methylacidiphilum are able to complement each other's nutritional deficiencies, resulting in a mutually beneficial relationship, especially in vitamin B1(thiamin), B3 (niacin), and B7 (biotin) metabolism. These findings provide insights into the role of Alicyclobacillus isolates in geothermal environments and their unique metabolic adaptations to these environments.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Materials Research Laboratory, Energy and Biosciences Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Na Kyung Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Materials Research Laboratory, Energy and Biosciences Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Alex P. R. Phillips
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - David A. Parker
- Materials Research Laboratory, Energy and Biosciences Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Westhollow Technology Center, Shell Exploration and Production Inc., Houston, TX, United States
| | - Ping Liu
- Materials Research Laboratory, Energy and Biosciences Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Westhollow Technology Center, Shell Exploration and Production Inc., Houston, TX, United States
| | - Rachel J. Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Christopher V. Rao
- Materials Research Laboratory, Energy and Biosciences Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Roderick I. Mackie
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Materials Research Laboratory, Energy and Biosciences Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
9
|
Oren A, Göker M. Notification of changes in taxonomic opinion previously published outside the IJSEM. List of Changes in Taxonomic Opinion no. 38. Int J Syst Evol Microbiol 2023; 73. [PMID: 37526965 DOI: 10.1099/ijsem.0.005923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. A step into the rare biosphere: genomic features of the new genus Terrihalobacillus and the new species Aquibacillus salsiterrae from hypersaline soils. Front Microbiol 2023; 14:1192059. [PMID: 37228371 PMCID: PMC10203224 DOI: 10.3389/fmicb.2023.1192059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypersaline soils are a source of prokaryotic diversity that has been overlooked until very recently. The phylum Bacillota, which includes the genus Aquibacillus, is one of the 26 phyla that inhabit the heavy metal contaminated soils of the Odiel Saltmarshers Natural Area (Southwest Spain), according to previous research. In this study, we isolated a total of 32 strains closely related to the genus Aquibacillus by the traditional dilution-plating technique. Phylogenetic studies clustered them into two groups, and comparative genomic analyses revealed that one of them represents a new species within the genus Aquibacillus, whereas the other cluster constitutes a novel genus of the family Bacillaceae. We propose the designations Aquibacillus salsiterrae sp. nov. and Terrihalobacillus insolitus gen. nov., sp. nov., respectively, for these two new taxa. Genome mining analysis revealed dissimilitude in the metabolic traits of the isolates and their closest related genera, remarkably the distinctive presence of the well-conserved pathway for the biosynthesis of molybdenum cofactor in the species of the genera Aquibacillus and Terrihalobacillus, along with genes that encode molybdoenzymes and molybdate transporters, scarcely found in metagenomic dataset from this area. In-silico studies of the osmoregulatory strategy revealed a salt-out mechanism in the new species, which harbor the genes for biosynthesis and transport of the compatible solutes ectoine and glycine betaine. Comparative genomics showed genes related to heavy metal resistance, which seem required due to the contamination in the sampling area. The low values in the genome recruitment analysis indicate that the new species of the two genera, Terrihalobacillus and Aquibacillus, belong to the rare biosphere of representative hypersaline environments.
Collapse
|
11
|
Oren A, Göker M. Validation List no. 211. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73. [PMID: 37255409 DOI: 10.1099/ijsem.0.005845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|