1
|
Zhou C, Xu X, Peng Y, Wang G, Liu H, Jin Q, Jia R, Ma J, Kinouchi T, Wang G. Response of sulfate concentration to eutrophication on spatio-temporal scale in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176142. [PMID: 39255939 DOI: 10.1016/j.scitotenv.2024.176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The dramatical increase of sulfur concentration in eutrophic lakes, especially sulfate (SO42-), has brought attention to the impact on the lake ecosystem; however, the mechanisms driving the intensification of eutrophication and the role of SOâ‚„2- concentrations remain poorly understood. To assess the impact of eutrophication on SO42- dynamics in lakes, this study monitored SO42- concentrations in water and sediments across seven lakes with varying trophic statuses on a spatial scale, and in the eutrophic Lake Taihu over one year on a temporal scale, as well as a series of microcosms with different initial SO42- concentrations. Exogenous sulfur input is the primary driver of increased SO42- concentrations in lakes, the highest SO42- concentration in overlying water was 100Â mg/L, as well as which reached 310.9Â mg/L in sediment. The concurrent input of nutrients such as nitrogen and phosphorus exacerbated eutrophication, resulting in the destabilization of the sulfur cycle. Eutrophication promoted the SO42- concentration on the spatio-temporal scale, especially in sediment, and trophic lake index (TLI) showed a positive correlation with the SO42- in sediments (R2Â =Â 0.99; 0.88). The SO42- concentration in water and TLI showed a nonlinear correlation on the temporal scale (R2Â =Â 0.44), and showed a positive correlation on the spatial scale (R2Â =Â 0.49). Microscopic experiments demonstrate that the anaerobic environment created by cyanobacteria decomposition induced sulfate reduction and significantly reduces SO42- concentrations. Concurrently, the anaerobic environment facilitates the coupling of iron reduction with sulfate reduction, leading to a substantial increase in Acid Volatile Sulfides (AVS) in the sediment. These findings reveal that eutrophication has a dual effect on the dynamic change of SO42- concentrations in overlying water, which is helpful to accurately evaluate and predict the change of SO42- concentrations in lakes.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Peng
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guanshun Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210024, China.
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Hu JP, He YY, Li JH, Lü ZL, Zhang YW, Li YH, Li JL, Zhang MX, Cao YH, Zhang JL. Planting halophytes increases the rhizosphere ecosystem multifunctionality via reducing soil salinity. ENVIRONMENTAL RESEARCH 2024; 261:119707. [PMID: 39084507 DOI: 10.1016/j.envres.2024.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, β-glucosidase, β-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.
Collapse
Affiliation(s)
- Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan-Yuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jian-Hong Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, 553004, PR China
| | - Zhao-Long Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yue-Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Lü Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Zhang H, Ni T, Liu X, Ma B, Huang T, Zhao D, Li H, Chen K, Liu T. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. WATER RESEARCH 2024; 264:122219. [PMID: 39121820 DOI: 10.1016/j.watres.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Zhang Q, Xiong Y, Zhang J, Liu B, Chen T, Liu S, Dang C, Xu WD, Ahmad HA, Liu T. Eutrophication impacts the distribution and functional traits of viral communities in lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174339. [PMID: 38960155 DOI: 10.1016/j.scitotenv.2024.174339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Viruses play a crucial role in aquatic ecosystems by regulating microbial composition and impacting biogeochemical cycling. While the response of viral diversity to the trophic status has been preliminarily explored in lake ecosystems, there is limited integrated exploration of the biogeography of viruses, host associations, and the auxiliary metabolic genes (AMGs), particularly for plateau lakes. Therefore, this research investigated the viral biogeography, virus-host association, and AMGs in the surface waters of 11 lakes varying in trophic levels (eutrophic and oligo-mesotrophic) in the Yunnan-Guizhou plateau region of China. A total of 73,105 viral operational taxonomic units were obtained from 11 samples, with 84.8Â % remaining unannotated at the family level, indicating a predominance of novel viruses within these lakes. The most abundant viral family was Kyanoviridae (24.4Â %), recognized as a common cyanophage. The vast majority of cyanobacteria and several eukaryotic algae were predicted as hosts for the viruses, with a lytic lifestyle predominating the life strategy of these cyanophages, implying the potential influence of the virus on algae. The viral community structure significantly correlated with both trophic status and the bacterial community. The structure equation model analysis revealed chlorophyll a was the primary factor affecting viral communities. Moreover, numerous AMGs linked to carbon metabolism, phosphorus metabolism, sulfur metabolism, and photosynthesis were found in these lakes, some of which showed virus preference for the trophic statuses, suggesting a vital role of the virus in driving biogeochemical cycling in the lake crossing different nutrient levels. In addition, a restricted presence of viruses was found to infect humans or harbor antibiotic resistance genes in the lakes, suggesting a subtle yet potential link to human health. Overall, these findings offer insights into the response of viral communities to eutrophication and their potential role in biogeochemical cycling and controlling algal propagation.
Collapse
Affiliation(s)
- Qiue Zhang
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yanxuan Xiong
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jinhong Zhang
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Boya Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei D Xu
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, Hubei 430010, PR China
| | - Hafiz Adeel Ahmad
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
Jorquera MA, Acuña JJ, Huerta N, Bai J, Zhang L, Xiao R, Sadowsky MJ. Multiple antibiotic resistance and herbicide catabolic profiles of bacteria isolated from Lake Villarrica surface sediments (Chile). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124538. [PMID: 39002747 DOI: 10.1016/j.envpol.2024.124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Antibiotics and herbicides are contaminants of emerging concern in aquatic environments. Lake Villarrica is a relevant freshwater body in Chile and was recently designated a 'saturated nutrient zone'. Here, we investigated the occurrence of multiple antibiotic resistance (MAR) and herbicide catabolic profiles among bacteria present in the surface sediments of Lake Villarrica. The occurrence of antibiotic-resistant genes (ARGs; blaTEM, catA and tetM) and herbicide-catabolic genes (HCGs; phnJ and atzA) was investigated by qPCR. Subsequently, the presence of culturable bacteria with multiple resistance to amoxicillin (AMX), chloramphenicol (CHL) and oxytetracycline (OXT) was studied. Forty-six culturable MAR (AMX + CHL + OXT) strains were isolated and characterized with respect to their resistance to 11 antibiotics by using a disc diffusion assay and testing their ability to use herbicides as a nutrient source. qPCR analyses revealed that ARGs and HCGs were present in all sediment samples (101 to 103 gene copies g-1), with significant (P ≤ 0.05) higher values in sites near Villarrica city and cattle pastures. The plate method was used to recover MAR isolates from sediment (103-106 CFU g-1), and most of the 46 isolates also showed resistance to oxacillin (100%), cefotaxime (83%), erythromycin (96%) and vancomycin (93%). Additionally, 54 and 57% of the MAR isolates were able to grow on agar supplemented (50 mg L-1) with atrazine and glyphosate as nutrient sources, respectively. Most of the MAR isolates were taxonomically close to Pseudomonas (76.1%) and Pantoea (17.4%), particularly those isolated from urbanized sites (Pucón city). This study shows the presence of MAR bacteria with herbicide catabolic activity in sediments, which is valuable for conservation strategies and risk assessments of Lake Villarrica. However, major integrative studies on sediments as reservoirs or on the fate of MAR strains and traces of antibiotics and herbicides as a result of anthropic pressure are still needed.
Collapse
Affiliation(s)
- Milko A Jorquera
- Laboratorio de EcologÃa Microbiana Aplicada (EMALAB), Departamento de Ciencias QuÃmicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| | - Jacquelinne J Acuña
- Laboratorio de EcologÃa Microbiana Aplicada (EMALAB), Departamento de Ciencias QuÃmicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile; Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, La Reina, 7800003, Chile
| | - Nicole Huerta
- Laboratorio de EcologÃa Microbiana Aplicada (EMALAB), Departamento de Ciencias QuÃmicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Junhong Bai
- School of Environment, Beijing Normal University, 19, Xinjiekouwaida Street, Haidian District, Beijing, 100875, China
| | - Ling Zhang
- School of Environment, Beijing Normal University, 19, Xinjiekouwaida Street, Haidian District, Beijing, 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Michael J Sadowsky
- College of Agriculture, Food, and Environmental Sciences, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
6
|
Wang Y, Xiao R, Hu Y, Li J, Guo C, Zhang L, Zhang K, Jorquera MA, Pan W. Accumulation and ecological risk assessment of diazinon in surface sediments of Baiyangdian lake and its potential impact on probiotics and pathogens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124408. [PMID: 38906403 DOI: 10.1016/j.envpol.2024.124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Diazinon is an organophosphorus pesticide widely used in agriculture and household pest control, and its use also poses several environmental and health hazards. In this study, we investigated the spatial and temporal distribution of diazinon in Baiyangdian, evaluated its potential ecological risk and toxicity to aquatic organisms based on RQ (Risk quotient) and TU (Toxic unit) analysis, and assessed the potential effects of diazinon accumulation on probiotics and pathogens based on statistical analysis of high-throughput sequencing data. The results showed that diazinon in Baiyangdian posed a low to moderate chronic risk to sediment-dwelling organisms and a low toxicity effect on aquatic invertebrates, which was mainly concentrated in October and human-intensive areas. Meanwhile, increases in sediment electrical conductivity (EC), amorphous iron oxides content and phenol oxidase activity favored diazinon accumulation in sediments, whereas the opposite was the case for sediment organic carbon, β-1,4-glucosidase, phosphatase, catalase and pH, suggesting that environmental indicators play a key role in the behavior and distribution of diazinon. In addition, diazinon in heavily contaminated areas seem to inhibit the rare probiotics (Bifidobacterium adolescentis and Serratia sp.), while promoted dominant pathogens (e.g., Burkholderia cenocepacia), which can lead to increased disease risk to humans and ecosystems, disruption of ecological balance and potential health problems. However, probiotic Streptomyces xiamenensis resist to diazinon would be a potential degrader for diazinon remove. In conclusion, this study unveiled the effects of diazinon pollution on wetland ecosystems, emphasizing ecological impacts and potential health concerns. In addition, the discovery of diazinon resistant probiotics provided new insights into wetland ecological restoration.
Collapse
Affiliation(s)
- Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
7
|
Yuan Y, Liu H, Zhang L, Yin W, Li L, Chen T, Li Z, Wang A, Ding C. Intermittent electrostimulation-modified direct interspecies electron transfer for enhanced methanogenesis in anaerobic digestion of sulfate-rich wastewater. BIORESOURCE TECHNOLOGY 2024; 406:130992. [PMID: 38885726 DOI: 10.1016/j.biortech.2024.130992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Methane recovery and organics removal in sulfate (SO42-)-rich wastewater anaerobic digestion are hindered by electron competition between methanogenesis and sulfidogenesis. Here, intermittently electrostimulated bioelectrodes were developed to facilitate direct interspecies electron transfer (DIET)-driven syntrophic methanogenesis, increasing substrate competition among methanogenic archaea (MA). By optimising the electrochemical environment, MA was able to employ electron transfer more efficiently than sulfate-reducing bacteria (SRB), resulting in significant methane accumulation (58.1 ± 1.0 mL-CH4/m3reactor) and COD removal (90.5 ± 0.5 %) at lower COD/SO42- ratio. Intermittent electrostimulation improved the metabolic pathway for electroactive bacteria to utilize acetate and direct electrons to electrotrophic MA, decreasing SRB abundance and affecting the sulfate reduction pathway. Intermittently electrostimulated biofilms significantly increased gene levels of key enzymes in electron transport for cytochrome and e-pili biosynthesis, crucial for DIET, demonstrating enhanced DIET-driven syntrophic methanogenesis. This study provides a strategic approach to optimize methanogenesis in sulfate-rich wastewater anaerobic digestion.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Huan Liu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lulu Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wanxin Yin
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lin Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
8
|
Bute TF, Wyness A, Wasserman RJ, Dondofema F, Keates C, Dalu T. Microbial community and extracellular polymeric substance dynamics in arid-zone temporary pan ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173059. [PMID: 38723976 DOI: 10.1016/j.scitotenv.2024.173059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Microbial extracellular polymeric substances (EPS) are an important component in sediment ecology. However, most research is highly skewed towards the northern hemisphere and in more permanent systems. This paper investigates EPS (i.e., carbohydrates and proteins) dynamics in arid Austral zone temporary pans sediments. Colorimetric methods and sequence-based metagenomics techniques were employed in a series of small temporary pan ecosystems characterised by alternating wet and dry hydroperiods. Microbial community patterns of distribution were evaluated between seasons (hot-wet and cool-dry) and across depths (and inferred inundation period) based on estimated elevation. Carbohydrates generally occurred in relatively higher proportions than proteins; the carbohydrate:protein ratio was 2.8:1 and 1.6:1 for the dry and wet season respectively, suggesting that EPS found in these systems was largely diatom produced. The wet- hydroperiods (Carbohydrate mean 102 μg g-1; Protein mean 65 μg g-1) supported more EPS production as compared to the dry- hydroperiods (Carbohydrate mean 73 μg g-1; Protein mean 26 μg g-1). A total of 15,042 Unique Amplicon Sequence Variants (ASVs) were allocated to 51 bacterial phyla and 1127 genera. The most abundant genera had commonality in high temperature tolerance, with Firmicutes, Actinobacteria and Proteobacteria in high abundances. Microbial communities were more distinct between seasons compared to within seasons which further suggested that the observed metagenome functions could be seasonally driven. This study's findings implied that there were high levels of denitrification by mostly nitric oxide reductase and nitrite reductase enzymes. EPS production was high in the hot-wet season as compared to relatively lower rates of nitrification in the cool-dry season by ammonia monooxygenases. Both EPS quantities and metagenome functions were highly associated with availability of water, with high rates being mainly associated with wet- hydroperiods compared to dry- hydroperiods. These data suggest that extended dry periods threaten microbially mediated processes in temporary wetlands, with implications to loss of biodiversity by desiccation.
Collapse
Affiliation(s)
- Tafara F Bute
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa.
| | - Adam Wyness
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | - Ryan J Wasserman
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Farai Dondofema
- Department of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa
| | - Chad Keates
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Tatenda Dalu
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| |
Collapse
|
9
|
Xiao R, Hu Y, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Acuña JJ, Pan W. Pathogen profile of Baiyangdian Lake sediments using metagenomic analysis and their correlation with environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169628. [PMID: 38159771 DOI: 10.1016/j.scitotenv.2023.169628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Increasing concerns about public health and safety after covid-19 have raised pathogen studies, especially in aquatic environments. However, the extent to how different location and human activities affect geographic occurrence and distribution of pathogens in response to agricultural pollution, boat tourism disturbances and municipal wastewater inflow in a degraded lake remains unclear. Since the surrounding residents depend on the lake for their livelihood, understanding the pathogens reserved in lake sediment and the regulation possibility by environmental factors are challenges with far-reaching significance. Results showed that 187 pathogens were concurrently shared by the nine sediment samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant. The similar composition of the pathogens suggests that lake sediment may act as reservoirs of generalist pathogens which may pose infection risk to a wide range of host species. Of the four virulence factors (VFs) types analyzed, offensive VFs were dominant (>46Â % on average) in all samples, with dominant subtypes including adherence, secretion systems and toxins. Notably, the lake sediments under the impact of agricultural use (g1) showed significantly higher diversity and abundance of pathogen species and VFs than those under the impact of boat tourism (g2) and/or municipal wastewater inflow with reed marshes filtration (g3). From the co-occurrence networks, pathogens and pesticides, aggregate fractions, EC, pH, phosphatase have strong correlations. Strong positive correlations between pathogens and diazinon in g1 and ppDDT in g2 and g3 suggest higher pesticide-pathogen co-exposure risk. These findings highlight the need to explore pathogen - environmental factor interaction mechanisms in the human-impacted water environments where the control of pathogen invasion by environmental factors may accessible.
Collapse
Affiliation(s)
- Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Jacquelinne J Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
10
|
Hu Y, Xiao R, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Manquian J, Pan W. Distribution of organophosphorus pesticides and its potential connection with probiotics in sediments of a shallow freshwater lake. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104306. [PMID: 38244424 DOI: 10.1016/j.jconhyd.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Despite the serious health threats due to wide use of organophosphorus pesticides (OPPs) have been experimentally claimed to be remediated by probiotic microorganisms in various food and organism models, the interactions between OPPs and probiotics in the natural wetland ecosystem was rarely investigated. This study delves into the spatial and temporal distribution, contamination levels of OPPs in the Baiyangdian region, the diversity of probiotic communities in varying environmental contexts, and the potential connection with OPPs on these probiotics. In typical shallow lake wetland ecosystem-Baiyangdian lake in north China, eight OPPs were identified in the lake sediments, even though their detection rates were generally low. Malathion exhibited the highest average content among these pesticides (9.51Â ng/g), followed by fenitrothion (6.70Â ng/g). Conversely, chlorpyrifos had the lowest detection rate at only 2.14%. The region near Nanliu Zhuang (F10), significantly influenced by human activities, displayed the highest concentration of total OPPs (136.82Â ng/g). A total of 145 probiotic species spanning 78 genera were identified in Baiyangdian sediments. Our analysis underscores the relations of environmental factors such as phosphatase activity, pH, and electrical conductivity (EC) with probiotic community. Notably, several high-abundance probiotics including Pseudomonas chlororaphis, Clostridium sp., Lactobacillus fermentum, and Pseudomonas putida, etc., which were reported to exhibit significant potential for the degradation of OPPs, showed strongly correlations with OPPs in the Baiyangdian lake sediments. The outcomes of this research offer valuable insights into the spatiotemporal dynamics of OPPs in natural large lake wetland and the probability of their in-situ residue bioremediation through the phosphatase pathway mediated by probiotic such as Lactic acid bacteria in soils/sediments contaminated with OPPs.
Collapse
Affiliation(s)
- Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Javiera Manquian
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|