1
|
Walker AC, Bhargava R, Bucher MJ, Argote YM, Brust AS, Czyż DM. Identification of proteotoxic and proteoprotective bacteria that non-specifically affect proteins associated with neurodegenerative diseases. iScience 2024; 27:110828. [PMID: 39310761 PMCID: PMC11414702 DOI: 10.1016/j.isci.2024.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/05/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
There are no cures for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Emerging evidence suggests the gut microbiota plays a role in their pathogenesis, though the influences of specific bacteria on disease-associated proteins remain elusive. Here, we reveal the effects of 229 human bacterial isolates on the aggregation and toxicity of Aβ1-42, α-synuclein, and polyglutamine tracts in Caenorhabditis elegans expressing these culprit proteins. Our findings demonstrate that bacterial effects on host protein aggregation are consistent across different culprit proteins, suggesting that microbes affect protein stability by modulating host proteostasis rather than selectively targeting disease-associated proteins. Furthermore, we found that feeding C. elegans proteoprotective Prevotella corporis activates the heat shock response, revealing an unexpected discovery of a microbial influence on host proteostasis. Insight into how individual bacteria affect PCD proteins could open new strategies for prevention and treatment by altering the abundance of microbes.
Collapse
Affiliation(s)
- Alyssa C. Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Rohan Bhargava
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Michael J. Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Yoan M. Argote
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Amanda S. Brust
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M. Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Papalia M, González-Espinosa F, Castedo FQ, Gutkind G, Ramírez MS, Power P, Radice M. Genetic and Biochemical Characterization of AXC-2 from Achromobacter ruhlandii. Pathogens 2024; 13:115. [PMID: 38392853 PMCID: PMC10893412 DOI: 10.3390/pathogens13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Achromobacter spp. are intrinsically resistant to multiple antibiotics and can also acquire resistance to those commonly used for the treatment of respiratory infections, especially in patients with cystic fibrosis. The aim of this study was to perform the genetic and biochemical characterization of AXC-2 from A. ruhlandii and to analyze all available AXC variants. Steady-state kinetic parameters were determined on a purified AXC-2 enzyme. It exhibited higher catalytic efficiencies towards amino-penicillins and older cephalosporins, while carbapenems behaved as poor substrates. Phylogenetic analysis of all blaAXC variants available in the NCBI was conducted. AXC was encoded in almost all A. ruhlandii genomes, whereas it was only found in 30% of A. xylosoxidans. AXC-1 was prevalent among A. xylosoxidans. AXC variants were clustered in two main groups, correlating with the Achromobacter species. No association could be established between the presence of blaAXC variants and a specific lineage of A. xylosoxidans; however, a proportion of AXC-1-producing isolates corresponded to ST 182 and ST 447. In conclusion, this study provides valuable insights into the genetic context and kinetic properties of AXC-2, identified in A. ruhlandii. It also provides a thorough description of all AXC variants and their association with Achromobacter species and various lineages.
Collapse
Affiliation(s)
- Mariana Papalia
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Francisco González-Espinosa
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Fátima Quiroga Castedo
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Pablo Power
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Marcela Radice
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
3
|
Tawhari I, Saggese S, Alshahrani SS, Asiri G, Alshahrani SA, Summan S, Al Qasim YY, Al Majbar YA. Peritoneal Dialysis-Associated Peritonitis Caused by Achromobacter xylosoxidans: A Case Report and Literature Review. J Investig Med High Impact Case Rep 2024; 12:23247096231220467. [PMID: 38164897 PMCID: PMC10762871 DOI: 10.1177/23247096231220467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Achromobacter xylosoxidans is a gram-negative bacterium that is responsible for rare peritonitis associated with peritoneal dialysis (PD). We present a case of a 64-year-old woman with a medical history of end-stage renal disease undergoing PD who was admitted to the emergency department with abdominal pain and nausea. Physical examination and laboratory studies revealed peritoneal signs and laboratory abnormalities consistent with peritonitis. Intraperitoneal catheter dysfunction was identified and subsequently resolved via laparoscopy. Following a peritoneal fluid culture, A xylosoxidans was identified, leading to the initiation of intraperitoneal meropenem treatment. After an initial improvement, the patient developed an ileus and recurrent abdominal symptoms, and further peritoneal cultures remained positive for A xylosoxidans. Subsequent treatment included intravenous meropenem and vancomycin for Clostridium difficile colitis. Owing to the high likelihood of biofilm formation on the PD catheter by A xylosoxidans, the catheter was removed, and the patient transitioned to hemodialysis. Intravenous meropenem was continued for 2 weeks post-catheter removal. This case highlights the challenges in managing recurrent peritonitis in PD patients caused by multidrug-resistant A xylosoxidans. A high index of suspicion, appropriate microbiological identification, and targeted intraperitoneal and systemic antibiotic treatment, along with catheter management, are crucial in achieving a favorable outcome in such cases.
Collapse
Affiliation(s)
- Ibrahim Tawhari
- King Khalid University, Abha, Saudi Arabia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samantha Saggese
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Carson DV, Zhang Y, So L, Cheung-Lee WL, Cartagena AJ, Darst SA, Link AJ. Discovery, Characterization, and Bioactivity of the Achromonodins: Lasso Peptides Encoded by Achromobacter. JOURNAL OF NATURAL PRODUCTS 2023; 86:2448-2456. [PMID: 37870195 PMCID: PMC10949989 DOI: 10.1021/acs.jnatprod.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Through genome mining efforts, two lasso peptide biosynthetic gene clusters (BGCs) within two different species of Achromobacter, a genus that contains pathogenic organisms that can infect patients with cystic fibrosis, were discovered. Using gene-refactored BGCs in E. coli, these lasso peptides, which were named achromonodin-1 and achromonodin-2, were heterologously expressed. Achromonodin-1 is naturally encoded by certain isolates from the sputum of patients with cystic fibrosis. The NMR structure of achromonodin-1 was determined, demonstrating that it is a threaded lasso peptide with a large loop and short tail structure, reminiscent of previously characterized lasso peptides that inhibit RNA polymerase (RNAP). Achromonodin-1 inhibits RNAP in vitro and has potent, focused activity toward Achromobacter pulmonis, another isolate from the sputum of a cystic fibrosis patient. These efforts expand the repertoire of antimicrobial lasso peptides and provide insights into how Achromobacter isolates from certain ecological niches interact with each other.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Larry So
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexis Jaramillo Cartagena
- Laboratory of Molecular Biophysics and Tri-Institutional Training Program in Chemical Biology, Rockefeller University, New York, NY 10065, United States
| | - Seth A. Darst
- Laboratory of Molecular Biophysics and Tri-Institutional Training Program in Chemical Biology, Rockefeller University, New York, NY 10065, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Lo SC, Tsai SY, Chang WH, Wu IC, Sou NL, Hung SHW, Chiang EPI, Huang CC. Characterization of the Pyrroloquinoline Quinone Producing Rhodopseudomonas palustris as a Plant Growth-Promoting Bacterium under Photoautotrophic and Photoheterotrophic Culture Conditions. Int J Mol Sci 2023; 24:14080. [PMID: 37762380 PMCID: PMC10531626 DOI: 10.3390/ijms241814080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Shang-Yieng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Wei-Hsiang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - I-Chen Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
6
|
Sahl C, Baumgarten M, Shannon O, Påhlman LI. Exoproducts of the Most Common Achromobacter Species in Cystic Fibrosis Evoke Similar Inflammatory Responses In Vitro. Microbiol Spectr 2023; 11:e0019523. [PMID: 37284754 PMCID: PMC10434066 DOI: 10.1128/spectrum.00195-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Achromobacter is a genus of Gram-negative rods, which can cause persistent airway infections in people with cystic fibrosis (CF). The knowledge about virulence and clinical implications of Achromobacter is still limited, and it is not fully established whether Achromobacter infections contribute to disease progression or if it is a marker of poor lung function. The most commonly reported Achromobacter species in CF is A. xylosoxidans. While other Achromobacter spp. are also identified in CF airways, the currently used Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI-TOF MS) method in routine diagnostics cannot distinguish between species. Differences in virulence between Achromobacter species have consequently not been well studied. In this study, we compare phenotypes and proinflammatory properties of A. xylosoxidans, A. dolens, A. insuavis, and A. ruhlandii using in vitro models. Bacterial supernatants were used to stimulate CF bronchial epithelial cells and whole blood from healthy individuals. Supernatants from the well-characterized CF-pathogen Pseudomonas aeruginosa were included for comparison. Inflammatory mediators were analyzed with ELISA and leukocyte activation was assessed using flow cytometry. The four Achromobacter species differed in morphology seen in scanning electron microscopy (SEM), but there were no observed differences in swimming motility or biofilm formation. Exoproducts from all Achromobacter species except A. insuavis caused significant IL-6 and IL-8 secretion from CF lung epithelium. The cytokine release was equivalent or stronger than the response induced by P. aeruginosa. All Achromobacter species activated neutrophils and monocytes ex vivo in a lipopolysaccharide (LPS)-independent manner. Our results indicate that exoproducts of the four included Achromobacter species do not differ consistently in causing inflammatory responses, but they are equally or even more capable of inducing inflammation compared with the classical CF pathogen P. aeruginosa. IMPORTANCE Achromobacter xylosoxidans is an emerging pathogen among people with cystic fibrosis (CF). Current routine diagnostic methods are often unable to distinguish A. xylosoxidans from other Achromobacter species, and the clinical relevance of different species is still unknown. In this work, we show that four different Achromobacter species relevant to CF evoke similar inflammatory responses from airway epithelium and leukocytes in vitro, but they are all equally or even more proinflammatory compared to the classic CF-pathogen Pseudomonas aeruginosa. The results suggest that Achromobacter species are important airway pathogens in CF, and that all Achromobacter species are relevant to treat.
Collapse
Affiliation(s)
- Cecilia Sahl
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Maria Baumgarten
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| |
Collapse
|
7
|
Gong J, Liu B, Liu P, Zhang L, Chen C, Wei Y, Li J, Ding GC. Changes in bacterial diversity, co-occurrence pattern, and potential pathogens following digestate fertilization: Extending pathogen management to field for anaerobic digestion of livestock manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:107-115. [PMID: 36652821 DOI: 10.1016/j.wasman.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Digestate can spread pathogens into agroecosystem, posing serious threats to public health. However, the effect of digestate fertilization on digestate- or soil-borne pathogens has not been fully explored. Herein, two settings of microcosm experiment were performed with arable soil and digestate collected at two sites (Beilangzhong or Shunyi) to dissect the succession of the total and potential pathogenic bacterial communities following digestate fertilization. Each experimental setting consisted of three treatments, including digestate aerobically incubated in sterilized soil, and soil amended with sterilized or non-sterilized digestate. Digestate-borne potential pathogenic bacteria were enriched after the aerobic incubation, with Streptococcus sobrinus in the Beilangzhong setting, and Escherichia coli and Enterococcus faecium in the Shunyi setting. Potential soil-borne pathogenic bacteria, such as Acinetobacter lowffii and Pseudomonas fluorescens, were stimulated by the sterilized digestate in the Shunyi setting. Interestingly, S. sobrinus, E. coli, and Ent. faecium did not increase when digestate was amended into the non-sterilized soil, suggesting that soil microorganisms can inhibit the resurgence of these digestate-borne pathogens. A large-scale survey further revealed that organic fertilization exerted a site-dependent effect on different species of potential pathogen, but it did not enrich the total relative abundance of potential pathogenic bacteria in soils. Collectively, these results highlight that pathogen management of anaerobic digestion of livestock manure needs to be extended from anaerobic reactor to field.
Collapse
Affiliation(s)
- Jingyang Gong
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Xinyang Agriculture and Forestry University, Xinyang, China
| | - Baojun Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Pingping Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Lina Zhang
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
| | - Chen Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China.
| |
Collapse
|