Sun Y, Chen S, Ren F, Li Y.
Lactobacillus paracaseiN1115 attenuates obesity in high-fat diet-induced obese mice.
Food Sci Nutr 2023;
11:418-427. [PMID:
36655072 PMCID:
PMC9834814 DOI:
10.1002/fsn3.3073]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
Disruption of the microbial structure of intestinal bacteria due to a high-fat diet (HFD) is closely associated with metabolic disorders, such as obesity and type 2 diabetes. Probiotics are known to modulate the gut microbiota; therefore, we demonstrated the capability of Lactobacillus paracasei N1115 (LC-N1115) to attenuate obesity. Four-week-old male C57BL/6J mice were fed a HFD for 12 weeks to induce obesity and were then randomized to supplemented placebo or LC-N1115 treatment group for another 12 weeks. LC-N1115 treatment reduced weight gain and liver fat accumulation as well as triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels. The administration of LC-N1115 suppressed the expression of fatty acid synthase, interleukin-1 β, and toll-like receptor 4. Notably, the operational taxonomic units that negatively and positively correlated with the obesity phenotypes were enriched and reduced, respectively, in the LC-N1115 treatment group. These results indicate that LC-N1115 attenuates obesity by modulating the gut microbiota and the expression of lipid synthesis and proinflammatory cytokine genes.
Collapse