1
|
Ahn M. Lithium alleviates paralysis in experimental autoimmune neuritis in Lewis rats by modulating glycogen synthase kinase-3β activity. J Vet Sci 2024; 25:e69. [PMID: 39363657 PMCID: PMC11450387 DOI: 10.4142/jvs.24212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/05/2024] Open
Abstract
IMPORTANCE Guillain-Barré syndrome (GBS)-like neuropathy mimics the leading cause of sporadic acute nontraumatic limb paralysis in individuals from developed countries. Experimental autoimmune neuritis (EAN) is an animal model of GBS and of syndromes such as acute canine polyradiculoneuritis, seen in dogs and cats. OBJECTIVE The involvement of glycogen synthase kinase (GSK)-3β, a pro-inflammatory molecule, in rat EAN is not fully understood. This study evaluated the potential role of GSK-3β in EAN through its inhibition by lithium. METHODS Lewis rats were injected with SP26 antigen to induce EAN. Lithium was administered from 1 day before immunization to day 14 post-immunization (PI). Then the rats were euthanized and their neural tissues were prepared for histological and Western blotting analyses. RESULTS Lithium, an inhibitor of GSK-3, significantly ameliorated EAN paralysis in rats, when administered from day 1 to day 14 PI. This corresponded with reduced inflammation in the sciatic nerves of EAN rats, where phosphorylation of GSK-3β was also upregulated, indicating suppression of GSK-3. CONCLUSIONS AND RELEVANCE These findings suggest that lithium, an inhibitor of GSK-3β, plays a significant role in ameliorating rat EAN paralysis, by suppressing GSK-3β and its related signals in EAN-affected sciatic nerves.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Korea.
| |
Collapse
|
2
|
Dittoe DK, Anderson RC, Krueger NA, Harvey RB, Poole TL, Crippen TL, Callaway TR, Ricke SC. Campylobacter jejuni Response When Inoculated in Bovine In Vitro Fecal Microbial Consortia Incubations in the Presence of Metabolic Inhibitors. Pathogens 2023; 12:1391. [PMID: 38133276 PMCID: PMC10747647 DOI: 10.3390/pathogens12121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Infection with the foodborne pathogen Campylobacter is the leading bacterial cause of human foodborne illness in the United States. The objectives of this experiment were to test the hypothesis that mixed microbial populations from the bovine rumen may be better at excluding Campylobacter than populations from freshly voided feces and to explore potential reasons as to why the rumen may be a less favorable environment for Campylobacter than feces. In an initial experiment, C. jejuni cultures inoculated without or with freshly collected bovine rumen fluid, bovine feces or their combination were cultured micro-aerobically for 48 h. Results revealed that C. jejuni grew at similar growth rates during the first 6 h of incubation regardless of whether inoculated with the rumen or fecal contents, with rates ranging from 0.178 to 0.222 h-1. However, C. jejuni counts (log10 colony-forming units/mL) at the end of the 48 h incubation were lowest in cultures inoculated with rumen fluid (5.73 log10 CFUs/mL), intermediate in cultures inoculated with feces or both feces and rumen fluid (7.16 and 6.36 log10 CFUs/mL) and highest in pure culture controls that had not been inoculated with the rumen or fecal contents (8.32 log10 CFUs/mL). In follow-up experiments intended to examine the potential effects of hydrogen and hydrogen-consuming methanogens on C. jejuni, freshly collected bovine feces, suspended in anaerobic buffer, were incubated anaerobically under either a 100% carbon dioxide or 50:50 carbon dioxide/hydrogen gas mix. While C. jejuni viability decreased <1 log10 CFUs/mL during incubation of the fecal suspensions, this did not differ whether under low or high hydrogen accumulations or whether the suspensions were treated without or with the mechanistically distinct methanogen inhibitors, 5 mM nitrate, 0.05 mM 2-bromosulfonate or 0.001 mM monensin. These results suggest that little if any competition between C. jejuni and hydrogen-consuming methanogens exists in the bovine intestine based on fecal incubations.
Collapse
Affiliation(s)
- Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | | | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Toni L. Poole
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Tawni L. Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Todd R. Callaway
- Ruminant Nutrition, Ruminant Microbiology, and Preharvest Food Safety, Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
3
|
Xiao J, Cheng Y, Zhang W, Lu Q, Guo Y, Hu Q, Wen G, Shao H, Luo Q, Zhang T. Genetic characteristics, antimicrobial susceptibility, and virulence genes distribution of Campylobacter isolated from local dual-purpose chickens in central China. Front Cell Infect Microbiol 2023; 13:1236777. [PMID: 37743858 PMCID: PMC10517862 DOI: 10.3389/fcimb.2023.1236777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Food-borne antibiotic-resistant Campylobacter poses a serious threat to public health. To understand the prevalence and genetic characteristics of Campylobacter in Chinese local dual-purpose (meat and eggs) chickens, the genomes of 30 Campylobacter isolates, including 13 C. jejuni and 17 C. coli from Jianghan-chickens in central China, were sequenced and tested for antibiotic susceptibility. The results showed that CC-354 and CC-828 were the dominant clonal complexes of C. jejuni and C. coli, respectively, and a phylogenetic analysis showed that three unclassified multilocus sequence types of C. coli were more closely genetically related to C. jejuni than to other C. coli in this study. Of the six antibiotics tested, the highest resistance rates were to ciprofloxacin and tetracycline (100%), followed by lincomycin (63.3%), erythromycin (30.0%), amikacin (26.7%), and cefotaxime (20.0%). The antibiotic resistance rate of C. coli was higher than that of C. jejuni. The GyrA T86I mutation and 15 acquired resistance genes were detected with whole-genome sequencing (WGS). Among those, the GyrA T86I mutation and tet(O) were most prevalent (both 96.7%), followed by the blaOXA-type gene (90.0%), ant(6)-Ia (26.7%), aac(6')-aph(3'') (23.3%), erm(B) (13.3%), and other genes (3.3%). The ciprofloxacin and tetracycline resistance phenotypes correlated strongly with the GyrA T86I mutation and tet(O)/tet(L), respectively, but for other antibiotics, the correlation between genes and resistance phenotypes were weak, indicating that there may be resistance mechanisms other than the resistance genes detected in this study. Virulence gene analysis showed that several genes related to adhesion, colonization, and invasion (including cadF, porA, ciaB, and jlpA) and cytolethal distending toxin (cdtABC) were only present in C. jejuni. Overall, this study extends our knowledge of the epidemiology and antibiotic resistance of Campylobacter in local Chinese dual-purpose chickens.
Collapse
Affiliation(s)
- Jia Xiao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yunqing Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiao Hu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
4
|
Finsterer J. Triggers of Guillain-Barré Syndrome: Campylobacter jejuni Predominates. Int J Mol Sci 2022; 23:ijms232214222. [PMID: 36430700 PMCID: PMC9696744 DOI: 10.3390/ijms232214222] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is a rare immune-mediated acute polyradiculo-neuropathy that typically develops after a previous gastrointestinal or respiratory infection. This narrative overview aims to summarise and discuss current knowledge and previous evidence regarding triggers and pathophysiology of GBS. A systematic search of the literature was carried out using suitable search terms. The most common subtypes of GBS are acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). The most common triggers of GBS, in three quarters of cases, are previous infections. The most common infectious agents that cause GBS include Campylobacter jejuni (C. jejuni), Mycoplasma pneumoniae, and cytomegalovirus. C. jejuni is responsible for about a third of GBS cases. GBS due to C. jejuni is usually more severe than that due to other causes. Clinical presentation of GBS is highly dependent on the structure of pathogenic lipo-oligosaccharides (LOS) that trigger the innate immune system via Toll-like-receptor (TLR)-4 signalling. AIDP is due to demyelination, whereas in AMAN, structures of the axolemma are affected in the nodal or inter-nodal space. In conclusion, GBS is a neuro-immunological disorder caused by autoantibodies against components of the myelin sheath or axolemma. Molecular mimicry between surface structures of pathogens and components of myelin or the axon is one scenario that may explain the pathophysiology of GBS.
Collapse
|