1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Kotimoole CN, Ramya VK, Kaur P, Reiling N, Shandil RK, Narayanan S, Flo TH, Prasad TSK. Discovery of Species-Specific Proteotypic Peptides To Establish a Spectral Library Platform for Identification of Nontuberculosis Mycobacteria from Mass Spectrometry-Based Proteomics. J Proteome Res 2024; 23:1102-1117. [PMID: 38358903 DOI: 10.1021/acs.jproteome.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nontuberculous mycobacteria are opportunistic bacteria pulmonary and extra-pulmonary infections in humans that closely resemble Mycobacterium tuberculosis. Although genome sequencing strategies helped determine NTMs, a common assay for the detection of coinfection by multiple NTMs with M. tuberculosis in the primary attempt of diagnosis is still elusive. Such a lack of efficiency leads to delayed therapy, an inappropriate choice of drugs, drug resistance, disease complications, morbidity, and mortality. Although a high-resolution LC-MS/MS-based multiprotein panel assay can be developed due to its specificity and sensitivity, it needs a library of species-specific peptides as a platform. Toward this, we performed an analysis of proteomes of 9 NTM species with more than 20 million peptide spectrum matches gathered from 26 proteome data sets. Our metaproteomic analyses determined 48,172 species-specific proteotypic peptides across 9 NTMs. Notably, M. smegmatis (26,008), M. abscessus (12,442), M. vaccae (6487), M. fortuitum (1623), M. avium subsp. paratuberculosis (844), M. avium subsp. hominissuis (580), and M. marinum (112) displayed >100 species-specific proteotypic peptides. Finally, these peptides and corresponding spectra have been compiled into a spectral library, FASTA, and JSON formats for future reference and validation in clinical cohorts by the biomedical community for further translation.
Collapse
Affiliation(s)
- Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Vadageri Krishnamurthy Ramya
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, D-23845 Borstel, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Kunnskapssenteret, Øya 424.04.035, Norway
| | | |
Collapse
|
3
|
Downes SG, Owens RA, Walshe K, Fitzpatrick DA, Dorey A, Jones GW, Doyle S. Gliotoxin-mediated bacterial growth inhibition is caused by specific metal ion depletion. Sci Rep 2023; 13:16156. [PMID: 37758814 PMCID: PMC10533825 DOI: 10.1038/s41598-023-43300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Overcoming antimicrobial resistance represents a formidable challenge and investigating bacterial growth inhibition by fungal metabolites may yield new strategies. Although the fungal non-ribosomal peptide gliotoxin (GT) is known to exhibit antibacterial activity, the mechanism(s) of action are unknown, although reduced gliotoxin (dithiol gliotoxin; DTG) is a zinc chelator. Furthermore, it has been demonstrated that GT synergises with vancomycin to inhibit growth of Staphylococcus aureus. Here we demonstrate, without precedent, that GT-mediated growth inhibition of both Gram positive and negative bacterial species is reversed by Zn2+ or Cu2+ addition. Both GT, and the known zinc chelator TPEN, mediate growth inhibition of Enterococcus faecalis which is reversed by zinc addition. Moreover, zinc also reverses the synergistic growth inhibition of E. faecalis observed in the presence of both GT and vancomycin (4 µg/ml). As well as zinc chelation, DTG also appears to chelate Cu2+, but not Mn2+ using a 4-(2-pyridylazo)resorcinol assay system and Zn2+ as a positive control. DTG also specifically reacts in Fe3+-containing Siderotec™ assays, most likely by Fe3+ chelation from test reagents. GSH or DTT show no activity in these assays. Confirmatory high resolution mass spectrometry, in negative ion mode, confirmed, for the first time, the presence of both Cu[DTG] and Fe[DTG]2 chelates. Label free quantitative proteomic analysis further revealed major intracellular proteomic remodelling within E. faecalis in response to GT exposure for 30-180 min. Globally, 4.2-7.2% of detectable proteins exhibited evidence of either unique presence/increased abundance or unique absence/decreased abundance (n = 994-1160 total proteins detected), which is the first demonstration that GT affects the bacterial proteome in general, and E. faecalis, specifically. Unique detection of components of the AdcABC and AdcA-II zinc uptake systems was observed, along with apparent ribosomal reprofiling to zinc-free paralogs in the presence of GT. Overall, we hypothesise that GT-mediated bacterial growth inhibition appears to involve intracellular zinc depletion or reduced bioavailability, and based on in vitro chelate formation, may also involve dysregulation of Cu2+ homeostasis.
Collapse
Affiliation(s)
- Shane G Downes
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | | | | | - Amber Dorey
- Molecular Parasitology, University of Galway, Galway, Ireland
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Health, Leeds-Beckett University, Leeds, UK.
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|