1
|
Jiang Z, Zhu Y, Sun Z, Zhai H, Zhou F, Yan X, Chen Q, Chen J, Zeng J. Size-fractionated N 2 fixation off the Changjiang Estuary during summer. Front Microbiol 2023; 14:1189410. [PMID: 37228373 PMCID: PMC10203160 DOI: 10.3389/fmicb.2023.1189410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent evidence has shown active N2 fixation in coastal eutrophic waters, yet the rate and controlling factors remain poorly understood, particularly in large estuaries. The Changjiang Estuary (CE) and adjacent shelf are characterized by fresh, nitrogen-replete Changjiang Diluted Water (CDW) and saline, nitrogen-depletion intruded Kuroshio water (Taiwan Warm Current and nearshore Kuroshio Branch Current), where N2 fixation may be contributed by different groups (i.e., Trichodesmium and heterotrophic diazotrophs). Here, for the first time, we provide direct measurement of size-fractionated N2 fixation rates (NFRs) off the CE during summer 2014 using the 15N2 bubble tracer method. The results demonstrated considerable spatial variations (southern > northern; offshore > inshore) in surface and depth-integrated NFRs, averaging 0.83 nmol N L-1 d-1 and 24.3 μmol N m-2 d-1, respectively. The highest bulk NFR (99.9 μmol N m-2 d-1; mostly contributed by >10 μm fraction) occurred in the southeastern East China Sea, where suffered from strong intrusion of the Kuroshio water characterized by low N/P ratio (<10) and abundant Trichodesmium (up to 10.23 × 106 trichomes m-2). However, low NFR (mostly contributed by <10 μm fraction) was detected in the CE controlled by the CDW, where NOx concentration (up to 80 μmol L-1) and N/P ratio (>100) were high and Trichodesmium abundance was low. The >10 μm fraction accounted for 60% of depth-integrated bulk NFR over the CE and adjacent shelf. We speculated that the present NFR of >10 μm fraction was mostly supported by Trichodesmium. Spearman rank correlation indicated that the NFR was significantly positively correlated with Trichodesmium abundance, salinity, temperature and Secchi depth, but was negatively with turbidity, N/P ratio, NOx, and chlorophyll a concentration. Our study suggests that distribution and size structure of N2 fixation off the CE are largely regulated by water mass (intruded Kuroshio water and CDW) movement and associated diazotrophs (particularly Trichodesmium) and nutrient conditions.
Collapse
Affiliation(s)
- Zhibing Jiang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resource, Hangzhou, China
- Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, Hangzhou, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resource, Hangzhou, China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, Hangzhou, China
| | - Zhenhao Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hongchang Zhai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, Hangzhou, China
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Quanzhen Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resource, Hangzhou, China
| |
Collapse
|