1
|
Butters A, Jovel J, Gow S, Liljebjelke K, Waldner C, Checkley SL. PmrB Y358N, E123D amino acid substitutions are not associated with colistin resistance but with phylogeny in Escherichia coli. Microbiol Spectr 2024; 12:e0053224. [PMID: 39162501 PMCID: PMC11451601 DOI: 10.1128/spectrum.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Colistin resistance in Escherichia coli is of public health significance for its use to treat multidrug-resistant Gram-negative infections. Amino acid variations in PmrB have been implicated in colistin resistance in E. coli. In this cross-sectional study, 288 generic E. coli isolates from surveillance of broiler chicken and feedlot cattle feces, retail meat, wastewater, and well water were whole-genome sequenced. Phylogroup designation and screening for two amino acid substitutions in PmrB putatively linked to colistin resistance (Y358N, E123D) were performed in silico. Three additional data sets of publicly available E. coli assemblies were similarly scrutinized: (i) E. coli isolates from studies identifying the Y358N or E123D substitutions, (ii) colistin-susceptible E. coli isolates reported in the literature, and (iii) a random sampling of 14,700 E. coli assemblies available in the National Center for Biotechnology Information public database. Within all data sets, ≥95% of phylogroup B1 and C isolates have the PmrB Y358N variation. The PmrB E123D amino acid substitution was only identified in phylogroup B2 isolates, of which 94%-100% demonstrate the substitution. Both PmrB amino acid variations were infrequent in other phylogroups. Among published colistin susceptible isolates, colistin minimum inhibitory concentrations (MICs) were not higher in isolates bearing the E123D and Y358N amino acid variations than in isolates without these PmrB substitutions. The E123D and Y358N PmrB amino acid substitutions in E. coli appear strongly associated with phylogroup. The previously observed associations between Y358N and E123D amino acid substitutions in PmrB and colistin resistance in E. coli may be spurious. IMPORTANCE Colistin is a critical last-resort treatment for extensively drug-resistant Gram-negative infections in humans. Therefore, accurate identification of the genetic mechanisms of resistance to this antimicrobial is crucial to effectively monitor and mitigate the spread of resistance. Examining over 16,000 whole-genome sequenced Escherichia coli isolates, this study identifies that PmrB E123D and Y358N amino acid substitutions previously associated with colistin resistance in E. coli are strongly associated with phylogroup and are alone not sufficient to confer a colistin-resistant phenotype. This is a critical clarification, as both substitutions are identified as putative mechanisms of colistin resistance in many publications and a common bioinformatic tool. Given the potential spurious nature of initial associations of these substitutions with colistin resistance, this study's findings emphasize the importance of appropriate experimental design and consideration of relevant biological factors such as phylogroup when ascribing causal mechanisms of resistance to chromosomal variations.
Collapse
Affiliation(s)
- Alyssa Butters
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Juan Jovel
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
| | - Sheryl Gow
- Canadian Integrated
Program for Antimicrobial Resistance Surveillance/FoodNet, Public Health
Agency of Canada, Ottawa,
Ontario, Canada
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Karen Liljebjelke
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Cheryl Waldner
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| |
Collapse
|
2
|
Alsahlani F, Haeili M. Genetic Alterations Associated with Colistin Resistance Development in Escherichia coli. Microb Drug Resist 2024; 30:325-331. [PMID: 38905152 DOI: 10.1089/mdr.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Background: The increased incidence of infections due to multidrug-resistant Gram-negative bacteria has led to the renewed interest in the use of 'forgotten' antibiotics such as colistin. In this work, we studied the chromosomal colistin resistance mechanisms among laboratory-induced colistin-resistant Escherichia coli isolates. Methods: Three colistin-susceptible (ColS) clinical isolates of E. coli assigning to ST131, ST405, and ST361 were exposed to successively increasing concentrations of colistin. The nucleotide sequences of pmrA, pmrB, pmrD, phoP, phoQ, and mgrB genes were determined. The fitness burden associated with colistin resistance acquisition was determined by measuring the in vitro growth rate. Results: Colistin resistance induction resulted in 16-64 times increase in colistin MICs in mutants (n = 8) compared with parental isolates. Analysis of chromosomal genes in colistin-resistant mutants compared with those of ColS ancestors revealed genetic alterations confined to PmrAB two-component system and included PmrA G53R/R81S/L105P and PmrB E121K/E121A/A159P/A159V/G302E changes. The PmrB E121 was found as a critical position for colistin resistance development being altered in three mutants with different ancestors. The acquired colistin-resistance phenotype was stable following 10 consecutive passages in the absence of selective pressure of colistin and it did not alter the susceptibility of mutants to other antimicrobial agents. All mutants exhibited growth rates similar to their respective ColS ancestors, except for one isolate, which revealed a significant growth defect. Conclusion: Our results revealed that colistin resistance in E. coli was more related to PmrAB alterations, which did not impose a fitness cost in most cases.
Collapse
Affiliation(s)
- Fatemeh Alsahlani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Soman R, Veeraraghavan B, Hegde A, Varma S, Todi S, Singh RK, Nagavekar V, Rodrigues C, Swaminathan S, Ramsubramanian V, Ansari A, Chaudhry D, Pednekar A, Bhagat S, Patil S, Barkate H. Indian consensus on the managemeNt of carbapenem-resistant enterobacterales infection in critically ill patients II (ICONIC II). Expert Rev Anti Infect Ther 2024; 22:453-468. [PMID: 38790080 DOI: 10.1080/14787210.2024.2360116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION The rising challenge of carbapenem-resistant Enterobacterales (CRE) infections in Indian healthcare settings calls for clear clinical guidance on the management of these infections. The Indian consensus on the management of CRE infection in critically ill patients (ICONIC-II) is a follow-up of the ICONIC-I study, which was undertaken in 2019. AREAS COVERED A modified Delphi method was used to build expert consensus on CRE management in India, involving online surveys, face-to - face expert meetings, and a literature review. A panel of 12 experts was formed to develop potential clinical consensus statements (CCSs), which were rated through two survey rounds. The CCSs were finalized in a final face-to - face discussion. The finalized CCSs were categorized as consensus, near consensus, and no consensus. EXPERT OPINION The outcomes included 46 CCSs (consensus: 40; near consensus: 3; and no consensus: 3). The expert panel discussed and achieved consensus on various strategies for managing CRE infections, emphasizing the significance of existing and emerging resistance mechanisms, prompt and tailored empiric therapy, and use of combination therapies. The consensus statements based on the collective expertise of the panel can potentially assist clinicians in the management of CRE infections that lack high-level evidence.
Collapse
Affiliation(s)
- Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Ashit Hegde
- Department of Critical care, PD Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Subhash Varma
- Internal Medicine and Hematology Fortis Hospital Mohali, Mohali, India
| | - Subhash Todi
- Department of Critical Care and Emergency Medicine, AMRI Hospital, Kolkata, India
| | - R K Singh
- Department of Emergency Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vasant Nagavekar
- Department of Infectious Disease, Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Camilla Rodrigues
- Department of Microbiology and Serology, PD Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | | | - V Ramsubramanian
- Department of Infectious Diseases, Apollo Hospital, Chennai, India
| | - Abdul Ansari
- Department of Critical Care Services, Nanavati Super Speciality Hospital, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical care medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Amullya Pednekar
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
| | - Sagar Bhagat
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
| | - Saiprasad Patil
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
| | - Hanmant Barkate
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Maghembe RS, Magulye MA, Eilu E, Sekyanzi S, Mwesigwa S, Katagirya E. Chromosomal and plasmid-encoded virulence and multidrug resistance of Escherichia coli ST58/24 infecting a 2-year-old sickle cell patient with sepsis in Kampala Uganda, East Africa. Heliyon 2024; 10:e30187. [PMID: 38707307 PMCID: PMC11068601 DOI: 10.1016/j.heliyon.2024.e30187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Sepsis and drug resistance represent a complex of the most common global causes of mortality in intensive care units (ICUs) especially among patients with comorbidities. Extraintestinal pathogenic Escherichia coli (ExPEC) strains are highly implicated in systemic infections, with multidrug resistance exacerbating the risk of chronic conditions and patient mortality. The diversity of virulence and evolution of multidrug resistance are yet to be fully deciphered. In this work, we aimed at unveiling the pathogens and their genomic determinants of virulence and drug resistance relevant to increased sepsis in a sickle cell child admitted to ICU. From a rectal swab, we isolated a strain of E. coli from the patient and phenotypically tested it against a panel of selected beta lactams, fluoroquinolones, macrolides, aminoglycosides and colistin. We then sequenced the entire genome and integrated multiple bioinformatic pipelines to divulge the virulence and multidrug resistance profiles of the isolate. Our results revealed that the isolate belongs to the sequence type (ST) 58/24, which (ST58), is a known ExPEC. With the use of PathogenFinder, we were able to confirm that this isolate is a human pathogen (p = 0.936). The assembled chromosome and two plasmids encode virulence factors related to capsule (antiphagocytosis), serum survival and resistance, type 6 secretion system (T6SS), multiple siderophores (iron acquisition), and biosynthetic gene clusters for polyketides and nonribosomal peptides exhibiting host cell damaging activity in silico. The genome also harbors multidrug resistance genotypes including extended spectrum beta lactamase (ESBL) genes such as blaTEM-1A/B, sulfonamide resistance genes sul1/2, fluoroquinolone resistance genes dfrA5 and nonsynonymous mutations of the gene pmrB, conferring intrinsic colistin resistance. Conclusively, this pathogen holds the potential to cause systemic infection and might exacerbate sickle cell anemia in the patient. The virulence and multidrug resistance profiles are encoded by both the chromosome and plasmids. Genomic surveillance of pathogens with multidrug resistance among patients with commodities is crucial for effective disease management.
Collapse
Affiliation(s)
- Reuben S. Maghembe
- Department of Microbiologgy and Immunology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
- Department of Health and Biomedical Sciences, Didia Education and Health Organization, P. O. Box 113, Shinyanga, Tanzania
- Biological and Marine Sciences Unit, Faculty of Natural and Applied Sciences, Marian University College, P. O. Box 47, Bagamoyo, Tanzania
- Microbiology Section, Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 00704, Gaborone, Botswana
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Maximilian A.K. Magulye
- Department of Health and Biomedical Sciences, Didia Education and Health Organization, P. O. Box 113, Shinyanga, Tanzania
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Emmanuel Eilu
- Department of Microbiologgy and Immunology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Simon Sekyanzi
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| |
Collapse
|
5
|
Zhou L, Ye Q, Zhou Q, Wang J, Li G, Xiang J, Huang J, Zhao Y, Zheng T, Zuo H, Li S. Antimicrobial resistance and genomic investigation of Salmonella isolated from retail foods in Guizhou, China. Front Microbiol 2024; 15:1345045. [PMID: 38510999 PMCID: PMC10951074 DOI: 10.3389/fmicb.2024.1345045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Salmonella is a major foodborne pathogen worldwide that causes severe morbidity and mortality. It is mainly caused by consuming contaminated food, with retail food considered the primary source. Methods In Guizhou, China, 102 Salmonella strains isolated from 2016 to 2021 underwent phenotypic antimicrobial resistance testing and whole-genome sequencing (WGS) to understand Salmonella diversity, including serotypes, sequencing types (STs), antimicrobial genes, virulence genes, plasmid types, multi-locus sequence types (MLST), and core genome MLST (cgMLST). Results and discussion S.Typhimurium was the dominant serotype, and O:4(B) was the leading serogroup. The most prevalent genotype was ST40. Phenotypic antimicrobial resistance identified 66.7% of the sampled isolates as multi-drug resistant (MDR). S.Enteritidis (n = 7), S.Typhimurium (n = 1), S.Indiana (n = 1), S.Kentucky (n = 1), S.Uganda (n = 1), all of which were MDR, were resistant to Colistin. Resistance rates varied significantly across different strains and food types, particularly meat products exhibiting higher resistance. Notably, significant increases in resistance were observed from 2016 to 2021 for the following: ≥ 1 resistant (P = 0.001), MDR (P = 0.001), ampicillin (P = 0.001), tetracycline (P < 0.001), chloramphenicol (P = 0.030), and trimethoprim/sulfamethoxazole (P = 0.003). The marked escalation in drug resistance over the recent years, coupled with the varying resistance rates among food sources, underscores the growing public health concern. Our findings highlight the need for a coordinated approach to effectively monitor and respond to Salmonella infections in Guizhou, China.
Collapse
Affiliation(s)
- Li Zhou
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Qian Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qian Zhou
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jian Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Guanqiao Li
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jingshu Xiang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jingyu Huang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Yuanyuan Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shijun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| |
Collapse
|
6
|
Chopjitt P, Boueroy P, Morita M, Iida T, Akeda Y, Hamada S, Kerdsin A. Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant gene isolated from food animals in food supply chain. Front Cell Infect Microbiol 2024; 14:1289134. [PMID: 38384304 PMCID: PMC10880773 DOI: 10.3389/fcimb.2024.1289134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Colistin is widely used for the prophylaxis and treatment of infectious disease in humans and livestock. However, the global food chain may actively promote the dissemination of colistin-resistant bacteria in the world. Mobile colistin-resistant (mcr) genes have spread globally, in both communities and hospitals. This study sought to genomically characterize mcr-mediated colistin resistance in 16 Escherichia coli strains isolated from retail meat samples using whole genome sequencing with short-read and long-read platforms. To assess colistin resistance and the transferability of mcr genes, antimicrobial susceptibility testing and conjugation experiments were conducted. Among the 16 isolates, 11 contained mcr-1, whereas three carried mcr-3 and two contained mcr-1 and mcr-3. All isolates had minimum inhibitory concentration (MIC) for colistin in the range 1-64 μg/mL. Notably, 15 out of the 16 isolates demonstrated successful transfer of mcr genes via conjugation, indicative of their presence on plasmids. In contrast, the KK3 strain did not exhibit such transferability. Replicon types of mcr-1-containing plasmids included IncI2 and IncX4, while IncFIB, IncFII, and IncP1 contained mcr-3. Another single strain carried mcr-1.1 on IncX4 and mcr-3.5 on IncP1. Notably, one isolate contained mcr-1.1 located on a chromosome and carrying mcr-3.1 on the IncFIB plasmid. The chromosomal location of the mcr gene may ensure a steady spread of resistance in the absence of selective pressure. Retail meat products may act as critical reservoirs of plasmid-mediated colistin resistance that has been transmitted to humans.
Collapse
Affiliation(s)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sihigeyuki Hamada
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| |
Collapse
|
7
|
Shoaib M, He Z, Geng X, Tang M, Hao R, Wang S, Shang R, Wang X, Zhang H, Pu W. The emergence of multi-drug resistant and virulence gene carrying Escherichia coli strains in the dairy environment: a rising threat to the environment, animal, and public health. Front Microbiol 2023; 14:1197579. [PMID: 37520353 PMCID: PMC10382034 DOI: 10.3389/fmicb.2023.1197579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Escherichia coli is a common inhabitant of the intestinal microbiota and is responsible for udder infection in dairy cattle and gastro-urinary tract infections in humans. We isolated E. coli strains from a dairy farm environment in Xinjiang, China, and investigated their epidemiological characteristics, phenotypic and genotypic resistance to antimicrobials, virulence-associated genes, and phylogenetic relationship. A total of 209 samples were collected from different sources (feces, slurry, water, milk, soil) and cultured on differential and selective agar media (MAC and EMB). The presumptive identification was done by the VITEK2 system and confirmed by 16S rRNA gene amplification by PCR. Antimicrobial susceptibility testing was done by micro-dilution assay, and genomic characterization was done by simple and multiplex polymerase chain reaction (PCR). A total of 338 E. coli strains were identified from 141/209 (67.5%) of the samples. Most of the E. coli strains were resistant to sulfamethoxazole/trimethoprim (62.43%), followed by cefotaxime (44.08%), ampicillin (33.73%), ciprofloxacin (31.36%), tetracycline (28.99%), and a lesser extent to florfenicol (7.99%), gentamicin (4.44%), amikacin (1.77%), and fosfomycin (1.18%). All of the strains were susceptible to meropenem, tigecycline, and colistin sulfate. Among the resistant strains, 44.4% were identified as multi-drug resistant (MDR) showing resistance to at least one antibiotic from ≥3 classes of antibiotics. Eighteen out of 20 antibiotic-resistance genes (ARGs) were detected with sul2 (67.3%), blaTEM (56.3%), gyrA (73.6%), tet(B) (70.4%), aph(3)-I (85.7%), floR (44.4%), and fosA3 (100%, 1/1) being the predominant genes among different classes of antibiotics. Among the virulence-associated genes (VAGs), ompA was the most prevalent (86.69%) followed by ibeB (85.0%), traT (84.91%), ompT (73.96%), fyuA (23.1%), iroN (23.1%), and irp2 gene (21.9%). Most of the E. coli strains were classified under phylogenetic group B1 (75.45%), followed by A (18.34%), C (2.96%), D (1.18%), E (1.18%), and F (0.30%). The present study identified MDR E. coli strains carrying widely distributed ARGs and VAGs from the dairy environment. The findings suggested that the dairy farm environment may serve as a source of mastitis-causing pathogens in animals and horizontal transfer of antibiotic resistance and virulence genes carrying bacterial strains to humans via contaminated milk and meat, surface water and agricultural crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
8
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
9
|
Haeili M, Barmudeh S, Omrani M, Zeinalzadeh N, Kafil HS, Batignani V, Ghodousi A, Cirillo DM. Whole-genome sequence analysis of clinically isolated carbapenem resistant Escherichia coli from Iran. BMC Microbiol 2023; 23:49. [PMID: 36850019 PMCID: PMC9969672 DOI: 10.1186/s12866-023-02796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Enterobacterales (CRE) continues to threaten public health due to limited therapeutic options. In the current study the incidence of carbapenem resistance among the 104 clinical isolates of Escherichia coli and the genomic features of carbapenem resistant isolates were investigated. METHODS The susceptibility to imipenem, tigecycline and colistin was tested by broth dilution method. Susceptibility to other classes of antimicrobials was examined by disk diffusion test. The presence of blaOXA-48, blaKPC, blaNDM, and blaVIM carbapenemase genes was examined by PCR. Molecular characteristics of carbapenem resistant isolates were further investigated by whole-genome sequencing (WGS) using Illumina and Nanopore platforms. RESULTS Four isolates (3.8%) revealed imipenem MIC of ≥32 mg/L and positive results for modified carbapenem inactivation method and categorized as carbapenem resistant E. coli (CREC). Colistin, nitrofurantoin, fosfomycin, and tigecycline were the most active agents against all isolates (total susceptibility rate of 99, 99, 96 and 95.2% respectively) with the last three compounds being found as the most active antimicrobials for carbapenem resistant isolates (susceptibility rate of 100%). According to Multilocus Sequence Type (MLST) analysis the 4 CREC isolates belonged to ST167 (n = 2), ST361 (n = 1) and ST648 (n = 1). NDM was detected in all CREC isolates (NDM-1 (n = 1) and NMD-5 (n = 3)) among which one isolate co-harbored NDM-5 and OXA-181 carbapenemases. WGS further detected blaCTX-M-15, blaCMY-145, blaCMY-42 and blaTEM-1 (with different frequencies) among CREC isolates. Co-occurrence of NDM-type carbapenemase and 16S rRNA methyltransferase RmtB and RmtC was found in two isolates belonging to ST167 and ST648. A colistin-carbapenem resistant isolate which was mcr-negative, revealed various amino acid substitutions in PmrB, PmrD and PhoPQ proteins. CONCLUSION About 1.9% of E. coli isolates studied here were resistant to imipenem, colistin and/or amikacin which raises the concern about the outbreaks of difficult-to-treat infection by these emerging superbugs in the future.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Samaneh Barmudeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Narges Zeinalzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Virginia Batignani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Freire S, Grilo T, Rodrigues B, Oliveira R, Esteves C, Marques A, Poirel L, Aires-de-Sousa M. ESBL- and Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae among Bivalves from Portuguese Shellfish Production Areas. Microorganisms 2023; 11:microorganisms11020415. [PMID: 36838380 PMCID: PMC9965403 DOI: 10.3390/microorganisms11020415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Bivalves are filter-feeding organisms and biomarkers of bacterial pollution. Our study aimed to analyze the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Escherichia coli among bivalves. A total of 522 bivalve samples were collected along Portuguese shellfish production areas. Homogenized samples were screened for E. coli contamination on corresponding selective plates, allowing for concomitant growth of Klebsiella pneumoniae. E. coli growth was observed in 39% of the samples. Subsequent selective screening identified nine samples (4.4%) contaminated with ESBL producers, corresponding to E. coli (n = 7) and K. pneumoniae (n = 2), while a single carbapenemase-producing K. pneumoniae (0.5%) was identified. ESBLs were all CTX-M-types commonly identified in human isolates, i.e., CTX-M-32 (n = 4), CTX-M-15 (n = 4), and CTX-M-14 (n = 1). The carbapenemase producer harbored the blaGES-5 gene located on a ColE plasmid. Clonality was evaluated by multilocus sequence typing, identifying E. coli backgrounds as ST10, ST23, ST540, ST617, ST746, SLV206, and SLV2325, commonly identified among environmental and human strains. The K. pneumoniae isolates belonged to ST834, ST15, and DLV644. The occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae in bivalves reveals how the marine environment constitutes a reservoir of critical bacterial pathogens, thus potentially representing a risk to human health.
Collapse
Affiliation(s)
- Samanta Freire
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
| | - Teresa Grilo
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
| | - Bruna Rodrigues
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
| | - Rui Oliveira
- Instituto Português do Mar e Atmosfera, 1495-165 Lisboa, Portugal
| | - Carla Esteves
- Instituto Português do Mar e Atmosfera, 1495-165 Lisboa, Portugal
| | - António Marques
- Instituto Português do Mar e Atmosfera, 1495-165 Lisboa, Portugal
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa—Lisboa (ESSCVP-Lisboa), 1300-125 Lisboa, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), 2780-157 Oeiras, Portugal
- Correspondence: ; Tel.: +351-918184751
| |
Collapse
|
11
|
Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China. Foods 2023; 12:foods12030492. [PMID: 36766021 PMCID: PMC9913981 DOI: 10.3390/foods12030492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The global spread of colistin or carbapenem-resistant Enterobacteriaceae (CRE) has been a pressing threat to public health. Members of Enterobacteriaceae, especially Proteus mirabilis and Escherichia coli, have been prevalent foodborne pathogens and such pathogens from fresh vegetables have triggered foodborne illness in China. However, reports about CRE, especially P. mirabilis from fresh vegetables, are still lacking. In this study, we identified five blaNDM-positive P. mirabilis and five blaNDM-positive generic E. coli concurrently from five fresh vegetables in two markets from China, and four of the five E. coli also carried mcr-1. The 10 isolates were characterized with methods including antimicrobial susceptibility testing, conjugation, whole-genome sequencing and phylogenetic analysis. All 10 isolates were multidrug-resistant (MDR). blaNDM-5 in five E. coli isolates and one P. mirabilis carrying blaNDM-5 was located on similarly transferable IncX3 plasmids, while transferably untypable plasmids were the carriers of blaNDM-1 in four P. mirabilis isolates from different types of vegetables/markets. mcr-1 in the four blaNDM-5-positive E. coli was located on similarly non-conjugative IncHI2 MDR plasmids lacking transfer region. Notably, ISCR1 complex class 1 integron capable of capturing blaNDM-1 was found on all untypable plasmids from P. mirabilis, and five copies of ISCR1 complex class 1 integron containing blaNDM-1 even occurred in one P. mirabilis, which showed high-level carbapenem resistance. Plasmid and phylogenetic analysis revealed that the blaNDM-positive P. mirabilis and E. coli from fresh vegetables might be derived from animals and transmitted to humans via the food chain. The concurrence of blaNDM-positive P. mirabilis and E. coli carrying both mcr-1 and blaNDM in different types of fresh vegetables eaten raw is alarming and threatens food safety. Sustained surveillance of these foodborne pathogens among fresh vegetables is urgent to ensure the health of food consumers. We report for the first time the concurrence of blaNDM-positive P. mirabilis and mcr-1-bearing E. coli carrying blaNDM from the same fresh vegetables.
Collapse
|