1
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2024:1-23. [PMID: 39545771 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
2
|
Vasileiadis A, Bozidis P, Konstantinidis K, Kesesidis N, Potamiti L, Kolliopoulou A, Beloukas A, Panayiotidis MI, Havaki S, Gorgoulis VG, Gartzonika K, Karakasiliotis I. A Novel Dhillonvirus Phage against Escherichia coli Bearing a Unique Gene of Intergeneric Origin. Curr Issues Mol Biol 2024; 46:9312-9329. [PMID: 39329903 PMCID: PMC11430396 DOI: 10.3390/cimb46090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Antibiotics resistance is expanding amongst pathogenic bacteria. Phage therapy is a revived concept for targeting bacteria with multiple antibiotics resistances. In the present study, we isolated and characterized a novel phage from hospital treatment plant input, using Escherichia coli (E. coli) as host bacterium. Phage lytic activity was detected by using soft agar assay. Whole-genome sequencing of the phage was performed by using Next-Generation Sequencing (NGS). Host range was determined using other species of bacteria and representative genogroups of E. coli. Whole-genome sequencing of the phage revealed that Escherichia phage Ioannina is a novel phage within the Dhillonvirus genus, but significantly diverged from other Dhillonviruses. Its genome is a 45,270 bp linear double-stranded DNA molecule that encodes 61 coding sequences (CDSs). The coding sequence of CDS28, a putative tail fiber protein, presented higher similarity to representatives of other phage families, signifying a possible recombination event. Escherichia phage Ioannina lytic activity was broad amongst the E. coli genogroups of clinical and environmental origin with multiple resistances. This phage may present in the future an important therapeutic tool against bacterial strains with multiple antibiotic resistances.
Collapse
Affiliation(s)
- Anastasios Vasileiadis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45332 Ioannina, Greece; (P.B.); (K.G.)
| | - Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45332 Ioannina, Greece; (P.B.); (K.G.)
| | - Konstantinos Konstantinidis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
| | - Nikolaos Kesesidis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.P.); (M.I.P.)
| | - Anna Kolliopoulou
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (A.K.); (A.B.)
| | - Apostolos Beloukas
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (A.K.); (A.B.)
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.P.); (M.I.P.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45332 Ioannina, Greece; (P.B.); (K.G.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.V.); (K.K.); (N.K.)
| |
Collapse
|
3
|
Subramanian A. Emerging roles of bacteriophage-based therapeutics in combating antibiotic resistance. Front Microbiol 2024; 15:1384164. [PMID: 39035437 PMCID: PMC11257900 DOI: 10.3389/fmicb.2024.1384164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Amid the growing challenge of antibiotic resistance on a global scale, there has been a notable resurgence in bacteriophage-based treatments, signaling a shift in our approach to managing infections. Bacteriophages (BPs), bacterial predators of nature, present a promising alternative for tackling infections caused by antibiotic-resistant pathogens. This review delves into the intricate relationship between bacteriophages and resistant bacteria, exploring various treatment strategies. Drawing upon both preclinical and clinical studies, the review highlights the effectiveness of bacteriophage therapy, particularly when integrated synergistically with conventional antibiotics. It discusses various treatment approaches for systemic and localized infections, demonstrating the adaptability of bacteriophage therapy across different clinical scenarios. Furthermore, the formulation and delivery of bacteriophages shed light on the various methods used to encapsulate and administer them effectively. It also acknowledges the challenge of bacterial resistance to bacteriophages and the ongoing efforts to overcome this hurdle. In addition, this review highlights the importance of the bacteriophage sensitivity profile (phagogram), which helps tailor treatment regimens to individual patients and specific pathogens. By surpassing the limitations of traditional antibiotics, bacteriophage-based therapies offer a personalized and potent solution against antibiotic resistance, promising to reshape the future of infectious disease management.
Collapse
|
4
|
Santos‐Beneit F. What is the role of microbial biotechnology and genetic engineering in medicine? Microbiologyopen 2024; 13:e1406. [PMID: 38556942 PMCID: PMC10982607 DOI: 10.1002/mbo3.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.
Collapse
Affiliation(s)
- Fernando Santos‐Beneit
- Institute of Sustainable ProcessesValladolidSpain
- Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringUniversity of ValladolidValladolidSpain
| |
Collapse
|
5
|
Harris EB, Ewool KKK, Bowden LC, Fierro J, Johnson D, Meinzer M, Tayler S, Grose JH. Genomic and Proteomic Analysis of Six Vi01-like Phages Reveals Wide Host Range and Multiple Tail Spike Proteins. Viruses 2024; 16:289. [PMID: 38400064 PMCID: PMC10892097 DOI: 10.3390/v16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Enterobacteriaceae is a large family of Gram-negative bacteria composed of many pathogens, including Salmonella and Shigella. Here, we characterize six bacteriophages that infect Enterobacteriaceae, which were isolated from wastewater plants in the Wasatch front (Utah, United States). These phages are highly similar to the Kuttervirus vB_SenM_Vi01 (Vi01), which was isolated using wastewater from Kiel, Germany. The phages vary little in genome size and are between 157 kb and 164 kb, which is consistent with the sizes of other phages in the Vi01-like phage family. These six phages were characterized through genomic and proteomic comparison, mass spectrometry, and both laboratory and clinical host range studies. While their proteomes are largely unstudied, mass spectrometry analysis confirmed the production of five hypothetical proteins, several of which unveiled a potential operon that suggests a ferritin-mediated entry system on the Vi01-like phage family tail. However, no dependence on this pathway was observed for the single host tested herein. While unable to infect every genus of Enterobacteriaceae tested, these phages are extraordinarily broad ranged, with several demonstrating the ability to infect Salmonella enterica and Citrobacter freundii strains with generally high efficiency, as well as several clinical Salmonella enterica isolates, most likely due to their multiple tail fibers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA; (E.B.H.); (K.K.K.E.)
| |
Collapse
|
6
|
Bai R, Guo J. Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infect Drug Resist 2024; 17:449-462. [PMID: 38333568 PMCID: PMC10849896 DOI: 10.2147/idr.s451013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae), a significant contributor to the global challenge of antibiotic resistance, is not only a ubiquitous component of the human microbiome but also a potent pathogen capable of causing a spectrum of diseases. This review provides a thorough analysis of the intricate interactions between K. pneumoniae and the human immune system, elucidating its substantial impact on metabolic processes. We explore the mechanisms employed by K. pneumoniae to evade and manipulate immune responses, including molecular mimicry, immune modulation, and biofilm formation. The review further investigates the bacterium's influence on metabolic pathways, particularly glycolysis, highlighting how these interactions exacerbate disease severity. The emergence of multidrug-resistant and extremely drug-resistant strains within the Enterobacteriaceae family has heightened the public health crisis, underscoring the urgency for comprehensive research. We investigate the roles of the host's complement system, autophagy, cell death mechanisms, and various cytokines in combating K. pneumoniae infections, shedding light on areas that warrant further academic investigation. Additionally, the review discusses the challenges posed by K1- and K2-capsule polysaccharides in vaccine development due to their complex molecular structures and adhesive properties. Acknowledging the limited availability of effective antimicrobials, this review advocates for exploring alternative approaches such as immunotherapeutics, vaccinations, and phage therapy. We consolidate current knowledge on K. pneumoniae, covering classical and non-classical subtypes, antimicrobial resistance-mediated genes, virulence factors, and epidemiological trends in isolation and antibiotic resistance rates. This comprehensive review not only advances our understanding of K. pneumoniae but also underscores the imperative for ongoing research and collaborative efforts to develop new prevention and treatment strategies against this formidable pathogen.
Collapse
Affiliation(s)
- Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Saeed U, Insaf RA, Piracha ZZ, Tariq MN, Sohail A, Abbasi UA, Fida Rana MS, Gilani SS, Noor S, Noor E, Waheed Y, Wahid M, Najmi MH, Fazal I. Crisis averted: a world united against the menace of multiple drug-resistant superbugs -pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal. Front Microbiol 2023; 14:1270018. [PMID: 38098671 PMCID: PMC10720626 DOI: 10.3389/fmicb.2023.1270018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The efficacy of antibiotics and other antimicrobial agents in combating bacterial infections faces a grave peril in the form of antimicrobial resistance (AMR), an exceedingly pressing global health issue. The emergence and dissemination of drug-resistant bacteria can be attributed to the rampant overuse and misuse of antibiotics, leading to dire consequences such as organ failure and sepsis. Beyond the realm of individual health, the pervasive specter of AMR casts its ominous shadow upon the economy and society at large, resulting in protracted hospital stays, elevated medical expenditures, and diminished productivity, with particularly dire consequences for vulnerable populations. It is abundantly clear that addressing this ominous threat necessitates a concerted international endeavor encompassing the optimization of antibiotic deployment, the pursuit of novel antimicrobial compounds and therapeutic strategies, the enhancement of surveillance and monitoring of resistant bacterial strains, and the assurance of universal access to efficacious treatments. In the ongoing struggle against this encroaching menace, phage-based therapies, strategically tailored to combat AMR, offer a formidable line of defense. Furthermore, an alluring pathway forward for the development of vaccines lies in the utilization of virus-like particles (VLPs), which have demonstrated their remarkable capacity to elicit a robust immune response against bacterial infections. VLP-based vaccinations, characterized by their absence of genetic material and non-infectious nature, present a markedly safer and more stable alternative to conventional immunization protocols. Encouragingly, preclinical investigations have yielded promising results in the development of VLP vaccines targeting pivotal bacteria implicated in the AMR crisis, including Salmonella, Escherichia coli, and Clostridium difficile. Notwithstanding the undeniable potential of VLP vaccines, formidable challenges persist, including the identification of suitable bacterial markers for vaccination and the formidable prospect of bacterial pathogens evolving mechanisms to thwart the immune response. Nonetheless, the prospect of VLP-based vaccines holds great promise in the relentless fight against AMR, underscoring the need for sustained research and development endeavors. In the quest to marshal more potent defenses against AMR and to pave the way for visionary innovations, cutting-edge techniques that incorporate RNA interference, nanomedicine, and the integration of artificial intelligence are currently under rigorous scrutiny.
Collapse
Affiliation(s)
- Umar Saeed
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| | - Rawal Alies Insaf
- Regional Disease Surveillance and Response Unit Sukkur, Sukkur, Sindh, Pakistan
| | - Zahra Zahid Piracha
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | | | - Azka Sohail
- Central Park Teaching Hospital, Lahore, Pakistan
| | | | | | | | - Seneen Noor
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Elyeen Noor
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Maryam Wahid
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| | - Muzammil Hasan Najmi
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| | - Imran Fazal
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| |
Collapse
|
8
|
García P, Tabla R, Anany H, Bastias R, Brøndsted L, Casado S, Cifuentes P, Deaton J, Denes TG, Islam MA, Lavigne R, Moreno-Switt AI, Nakayama N, Muñoz Madero C, Sulakvelidze A, Svircev AM, Wagemans J, Biosca EG, Rivera D. ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems. Viruses 2023; 15:2224. [PMID: 38005900 PMCID: PMC10675804 DOI: 10.3390/v15112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The focus of this meeting was to discuss the suitability of using bacteriophages as alternative antimicrobials in the agrifood sector. Following a One Health approach, the workshop explored the possibilities of implementing phage application strategies in the agriculture, animal husbandry, aquaculture, and food production sectors. Therefore, the meeting had gathered phage researchers, representatives of the agrifood industry, and policymakers to debate the advantages and potential shortcomings of using bacteriophages as alternatives to traditional antimicrobials and chemical pesticides. Industry delegates showed the latest objectives and demands from consumers. Representatives of regulatory agencies (European Medicines Agency (EMA) and Spanish Agency of Medicines and Health Products (AEMPS)) presented an update of new regulatory aspects that will impact and support the approval and implementation of phage application strategies across the different sectors.
Collapse
Affiliation(s)
- Pilar García
- Instituto de Productos Lácteos de Asturias—Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain;
| | - Rafael Tabla
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06071 Badajoz, Spain;
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Bastias
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| | - Susana Casado
- Spanish Agency of Medicines and Health Products (AEMPS), 28022 Madrid, Spain;
| | | | - John Deaton
- ADM Science & Technology, Kennesaw, GA 30152, USA;
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA;
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820435, Chile;
| | - Natsuko Nakayama
- Japan Fisheries Research and Education Agency (FRA), Hiroshima 739-0452, Japan;
| | - Cristina Muñoz Madero
- Department of Medicines for Veterinary Use, Coordinator of the National Antibiotics Plan, Spanish Agency of Medicines and Health Products (AEMPS), 28022 Madrid, Spain;
| | | | | | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| |
Collapse
|
9
|
Nada MAL, Ancla JB, Yadao NMR, de Paz VP, Manalaysay JG, Samante FLD, Bigol UG. Isolation and genome sequencing of five lytic bacteriophages from hospital wastewater in the Philippines. Microbiol Resour Announc 2023; 12:e0031123. [PMID: 37526448 PMCID: PMC10508110 DOI: 10.1128/mra.00311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/17/2023] [Indexed: 08/02/2023] Open
Abstract
Here, we report the genome sequences of five bacteriophages isolated from hospital wastewater, including two new species and two candidates for therapeutic application. No virulence, temperate marker and antibiotic resistance genes were found in the genomes of Escherichia phage vB_VIPECOOM03 and Klebsiella phage vB_VIPKPNUMC01, making them suitable candidate for therapy.
Collapse
Affiliation(s)
- Michael Angelou L. Nada
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| | - Joseph B. Ancla
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| | - Nikka Mae R. Yadao
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| | - Virgilio P. de Paz
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| | - Jessica G. Manalaysay
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| | - Fred Lawrence D. Samante
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| | - Ursela G. Bigol
- Department of Science and Technology, Industrial Technology Development Institute, Taguig City, Philippines
| |
Collapse
|
10
|
Abordo AMS, Carascal MB, Remenyi R, Dalisay DS, Saludes JP. Clinically Isolated β-Lactam-Resistant Gram-Negative Bacilli in a Philippine Tertiary Care Hospital Harbor Multi-Class β-Lactamase Genes. Pathogens 2023; 12:1019. [PMID: 37623979 PMCID: PMC10459468 DOI: 10.3390/pathogens12081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In the Philippines, data are scarce on the co-occurrence of multiple β-lactamases (BLs) in clinically isolated Gram-negative bacilli. To investigate this phenomenon, we characterized BLs from various β-lactam-resistant Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from a Philippine tertiary care hospital. The selected Gram-negative bacilli (n = 29) were resistant to either third-generation cephalosporins (resistance category 1 (RC1)), cephalosporins and penicillin-β-lactamase inhibitors (RC2), or carbapenems (RC3). Isolates resistant to other classes of antibiotics but susceptible to early-generation β-lactams were also selected (RC4). All isolates underwent antibiotic susceptibility testing, disk-diffusion-based BL detection assays, and PCR with sequence analysis of extended-spectrum BLs (ESBLs), metallo-BLs, AmpC BLs, and oxacillinases. Among the study isolates, 26/29 harbored multi-class BLs. All RC1 isolates produced ESBLs, with blaCTX-M as the dominant (19/29) gene. RC2 isolates produced ESBLs, four of which harbored blaTEM plus blaOXA-1 or other ESBL genes. RC3 isolates carried blaNDM and blaIMP, particularly in three of the metallo-BL producers. RC4 Enterobacteriaceae carried blaCTX-M, blaTEM, and blaOXA-24-like, while A. baumannii and P. aeruginosa in this category carried either blaIMP or blaOXA-24. Genotypic profiling, in complement with phenotypic characterization, revealed multi-class BLs and cryptic metallo-BLs among β-lactam-resistant Gram-negative bacilli.
Collapse
Affiliation(s)
- Alecks Megxel S. Abordo
- Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines or (A.M.S.A.); (M.B.C.); (R.R.)
| | - Mark B. Carascal
- Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines or (A.M.S.A.); (M.B.C.); (R.R.)
| | - Roland Remenyi
- Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines or (A.M.S.A.); (M.B.C.); (R.R.)
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2) and Department of Biology, University of San Agustin, Iloilo 5000, Philippines;
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig 1631, Philippines
| | - Jonel P. Saludes
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig 1631, Philippines
- Center for Natural Drug Discovery and Development (CND3) and Department of Chemistry, University of San Agustin, Iloilo 5000, Philippines
| |
Collapse
|
11
|
Fungo GBN, Uy JCW, Porciuncula KLJ, Candelario CMA, Chua DPS, Gutierrez TAD, Clokie MRJ, Papa DMD. "Two Is Better Than One": The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:55-67. [PMID: 37350995 PMCID: PMC10282822 DOI: 10.1089/phage.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.
Collapse
Affiliation(s)
- Gale Bernice N. Fungo
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - John Christian W. Uy
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Kristiana Louise J. Porciuncula
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Chiarah Mae A. Candelario
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Deneb Philip S. Chua
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Tracey Antaeus D. Gutierrez
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Donna May D. Papa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
12
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Ali Z, Dishisha T, El-Gendy AO, Azmy AF. Isolation and phenotypic characterization of bacteriophage SA14 with lytic- and anti-biofilm activity against multidrug-resistant Enterococcus faecalis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Abstract
Background
Antimicrobial resistance is a growing global health concern demanding more attention and action at the international-, national- and regional levels. In the present study, bacteriophage was sought as a potential alternative to traditional antibiotics.
Results
Vancomycin-resistant Enterococcus faecalis was isolated from a urine sample. Partial 16S rRNA-gene sequencing and VITEK®2 system were employed for its identification, biochemical characterization, and antibiotic susceptibility testing. The isolate was resistant to eight antibiotics (out of 11): vancomycin, gentamicin (high-level synergy), streptomycin (high-level synergy), ciprofloxacin, levofloxacin, erythromycin, quinupristin/dalfopristin, and tetracycline. Bacteriophage SA14 was isolated from sewage water using the multidrug-resistant isolate as a host. Transmission electron micrographs revealed that phage SA14 is a member of the Siphoviridae family displaying the typical circular head and long non-contractile tail. The phage showed characteristic stability to a wide range of solution pH and temperatures, with optimal stability at pH 7.4 and 4 °C, while showing high specificity toward their host. Based on the one-step growth curve, the phage's latent period was 25 min, and the burst size was 20 PFU/ml. The lytic activity of phage SA14 was evaluated at various multiplicities of infection (MOI), all considerably suppressed the growth of the host organism. Moreover, phage SA14 displayed a characteristic anti-biofilm activity as observed by the reduction in adhered biomass and -viable cells in the pre-formed biofilm by 19.1-fold and 2.5-fold, respectively.
Conclusion
Phage therapy can be a valuable alternative to antibiotics against multi-drug resistant microorganisms.
Collapse
|
14
|
Abd-El Wahab A, Basiouni S, El-Seedi HR, Ahmed MFE, Bielke LR, Hargis B, Tellez-Isaias G, Eisenreich W, Lehnherr H, Kittler S, Shehata AA, Visscher C. An overview of the use of bacteriophages in the poultry industry: Successes, challenges, and possibilities for overcoming breakdowns. Front Microbiol 2023; 14:1136638. [PMID: 37025628 PMCID: PMC10071031 DOI: 10.3389/fmicb.2023.1136638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The primary contaminants in poultry are Salmonella enterica, Campylobacter jejuni, Escherichia coli, and Staphylococcus aureus. Their pathogenicity together with the widespread of these bacteria, contributes to many economic losses and poses a threat to public health. With the increasing prevalence of bacterial pathogens being resistant to most conventional antibiotics, scientists have rekindled interest in using bacteriophages as antimicrobial agents. Bacteriophage treatments have also been investigated as an alternative to antibiotics in the poultry industry. Bacteriophages' high specificity may allow them only to target a specific bacterial pathogen in the infected animal. However, a tailor-made sophisticated cocktail of different bacteriophages could broaden their antibacterial activity in typical situations with multiple clinical strains infections. Bacteriophages may not only be used in terms of reducing bacterial contamination in animals but also, under industrial conditions, they can be used as safe disinfectants to reduce contamination on food-contact surfaces or poultry carcasses. Nevertheless, bacteriophage therapies have not been developed sufficiently for widespread use. Problems with resistance, safety, specificity, and long-term stability must be addressed in particular. This review highlights the benefits, challenges, and current limitations of bacteriophage applications in the poultry industry.
Collapse
Affiliation(s)
- Amr Abd-El Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Basiouni
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Egypt
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Marwa F. E. Ahmed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Lisa R. Bielke
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Billy Hargis
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center, Technical University of Munich (TUM), Garching, Germany
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, a Part of Finktec Group, Bönen, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Research and Development Section, PerNaturam GmbH, An der Trift, Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, Bönen, Germany
- *Correspondence: Awad A. Shehata,
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Christian Visscher,
| |
Collapse
|
15
|
Wang L, Zhang J, Liu X, Ning H, Lin H, Wang J. Biological characterization and complete genome analysis of a novel Stenotrophomonas maltophilia phage vB_SM_ytsc_ply2008005c. Virus Res 2022; 318:198856. [PMID: 35780912 DOI: 10.1016/j.virusres.2022.198856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant bacteria have become a major threat to global public health. Bacteriophages are regarded as a promising substitute. Here, we present a novel lytic Stenotrophomonas maltophilia phage, vB_SM_ytsc_ply2008005c, which was isolated from sewage water samples in Qingdao, east China. Virion morphology of phage particles indicated that ply2008005c has an icosahedral head (56±5 nm in diameter) and a noncontractile sheathed tail (129±6 nm in length), which are the typical characteristics of phages belonging to the family Siphoviridae. Phage ply2008005c could be used for phage therapy for its stability in a wide pH (4 to 12) range and high temperature (up to 70°C) environment. Genome analysis revealed that ply2008005c has a circular double-strand DNA of 42,318 bp with a G+C content of 63.02%. It shared the closest relationship with phage vB_PaeS_PAO1_Ab18, but the homology coverage is just 20%. There were 54 open reading frames predicted in its genome, including three unique proteins and 34 functional genes in different modules. The phylogenetic analysis revealed that ply2008005c forms a distinct branch of the family Siphoviridae. These results demonstrated that ply2008005c was supposed to be a representative new member within the family Siphoviridae, which could be considered a potential bioagent against multidrug-resistant S. maltophilia.
Collapse
Affiliation(s)
- Luokai Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Jiayue Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Xing Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Houqi Ning
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
16
|
Lin J, Du F, Long M, Li P. Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules 2022; 27:molecules27061857. [PMID: 35335222 PMCID: PMC8951143 DOI: 10.3390/molecules27061857] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial infectious diseases cause serious harm to human health. At present, antibiotics are the main drugs used in the treatment of bacterial infectious diseases, but the abuse of antibiotics has led to the rapid increase in drug-resistant bacteria and to the inability to effectively control infections. Bacteriophages are a kind of virus that infects bacteria and archaea, adopting bacteria as their hosts. The use of bacteriophages as antimicrobial agents in the treatment of bacterial diseases is an alternative to antibiotics. At present, phage therapy (PT) has been used in various fields and has provided a new technology for addressing diseases caused by bacterial infections in humans, animals, and plants. PT uses bacteriophages to infect pathogenic bacteria so to stop bacterial infections and treat and prevent related diseases. However, PT has several limitations, due to a narrow host range, the lysogenic phenomenon, the lack of relevant policies, and the lack of pharmacokinetic data. The development of reasonable strategies to overcome these limitations is essential for the further development of this technology. This review article described the current applications and limitations of PT and summarizes the existing solutions for these limitations. This information will be useful for clinicians, people working in agriculture and industry, and basic researchers.
Collapse
Affiliation(s)
- Jiaxi Lin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Fangyuan Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Peng Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- Correspondence:
| |
Collapse
|