1
|
Hu Z, Wu Y, Freire T, Gjini E, Wood K. Linking spatial drug heterogeneity to microbial growth dynamics in theory and experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624783. [PMID: 39605592 PMCID: PMC11601811 DOI: 10.1101/2024.11.21.624783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Diffusion and migration play pivotal roles in microbial communities - shaping, for example, colonization in new environments and the maintenance of spatial structures of biodiversity. While previous research has extensively studied free diffusion, such as range expansion, there remains a gap in understanding the effects of biologically or physically deleterious confined environments. In this study, we examine the interplay between migration and spatial drug heterogeneity within an experimental meta-community of E. faecalis, a Gram-positive opportunistic pathogen. When the community is confined to spatially-extended habitats ('islands') bordered by deleterious conditions, we find that the population level response depends on the trade-off between the growth rate within the island and the rate of transfer into regions with harsher conditions, a phenomenon we explore by modulating antibiotic concentration within the island. In heterogeneous islands, composed of spatially patterned patches that support varying levels of growth, the population's fate depends critically on the specific spatial arrangement of these patches - the same spatially averaged growth rate leads to diverging responses. These results are qualitatively captured by simple simulations, and analytical expressions which we derive using first-order perturbation approximations to reaction-diffusion models with explicit spatial dependence. Among all possible spatial arrangements, our theoretical and experimental findings reveal that the arrangement with the highest growth rates at the center most effectively mitigates population decline, while the arrangement with the lowest growth rates at the center is the least effective. Extending this approach to more complex experimental communities with varied spatial structures, such as a ring-structured community, further validates the impact of spatial drug arrangement. Our findings suggest new approaches to interpreting diverging clinical outcomes when applying identical drug doses and inform the possible optimization of spatially-explicit dosing strategies.
Collapse
Affiliation(s)
- Zhijian Hu
- Department of Biophysics, University of Michigan, Ann Arbor, USA
- Department of Mathematics, University of Michigan, Ann Arbor, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
| | - Yuzhen Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Tomas Freire
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Kevin Wood
- Department of Biophysics, University of Michigan, Ann Arbor, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
- Department of Physics, University of Michigan, Ann Arbor, USA
| |
Collapse
|
2
|
Krajewska J, Tyski S, Laudy AE. In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective. Pharmaceuticals (Basel) 2024; 17:1068. [PMID: 39204172 PMCID: PMC11357384 DOI: 10.3390/ph17081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Environmental Health and Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology and Laboratory Diagnostic, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Nagy K, Valappil SK, Phan TV, Li S, Dér L, Morris R, Bos J, Winslow S, Galajda P, Ràkhely G, Austin RH. Microfluidic Ecology Unravels the Genetic and Ecological Drivers of T4r Bacteriophage Resistance in E. coli: Insights into Biofilm-Mediated Evolution. RESEARCH SQUARE 2024:rs.3.rs-4356333. [PMID: 38826273 PMCID: PMC11142369 DOI: 10.21203/rs.3.rs-4356333/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We use a microfluidic ecology which generates non-uniform phage concentration gradients and micro-ecological niches to reveal the importance of time, spatial population structure and collective population dynamics in the de novo evolution of T4r bacteriophage resistant motile E. coli. An insensitive bacterial population against T4r phage occurs within 20 hours in small interconnected population niches created by a gradient of phage virions, driven by evolution in transient biofilm patches. Sequencing of the resistant bacteria reveals mutations at the receptor site of bacteriophage T4r as expected but also in genes associated with biofilm formation and surface adhesion, supporting the hypothesis that evolution within transient biofilms drives de novo phage resistance.
Collapse
Affiliation(s)
- Krisztina Nagy
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - Trung V Phan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shengkai Li
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - László Dér
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ryan Morris
- School of Physics & Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - Julia Bos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
| | | | - Peter Galajda
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Ràkhely
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Robert H Austin
- Department of Physics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
5
|
Zoheir AE, Stolle C, Rabe KS. Microfluidics for adaptation of microorganisms to stress: design and application. Appl Microbiol Biotechnol 2024; 108:162. [PMID: 38252163 PMCID: PMC10803453 DOI: 10.1007/s00253-024-13011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Microfluidic systems have fundamentally transformed the realm of adaptive laboratory evolution (ALE) for microorganisms by offering unparalleled control over environmental conditions, thereby optimizing mutant generation and desired trait selection. This review summarizes the substantial influence of microfluidic technologies and their design paradigms on microbial adaptation, with a primary focus on leveraging spatial stressor concentration gradients to enhance microbial growth in challenging environments. Specifically, microfluidic platforms tailored for scaled-down ALE processes not only enable highly autonomous and precise setups but also incorporate novel functionalities. These capabilities encompass fostering the growth of biofilms alongside planktonic cells, refining selection gradient profiles, and simulating adaptation dynamics akin to natural habitats. The integration of these aspects enables shaping phenotypes under pressure, presenting an unprecedented avenue for developing robust, stress-resistant strains, a feat not easily attainable using conventional ALE setups. The versatility of these microfluidic systems is not limited to fundamental research but also offers promising applications in various areas of stress resistance. As microfluidic technologies continue to evolve and merge with cutting-edge methodologies, they possess the potential not only to redefine the landscape of microbial adaptation studies but also to expedite advancements in various biotechnological areas. KEY POINTS: • Microfluidics enable precise microbial adaptation in controlled gradients. • Microfluidic ALE offers insights into stress resistance and distinguishes between resistance and persistence. • Integration of adaptation-influencing factors in microfluidic setups facilitates efficient generation of stress-resistant strains.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Camilla Stolle
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Yuan L, Straub H, Shishaeva L, Ren Q. Microfluidics for Biofilm Studies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:139-159. [PMID: 37314876 DOI: 10.1146/annurev-anchem-091522-103827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biofilms are multicellular communities held together by a self-produced extracellular matrix and exhibit a set of properties that distinguish them from free-living bacteria. Biofilms are exposed to a variety of mechanical and chemical cues resulting from fluid motion and mass transport. Microfluidics provides the precise control of hydrodynamic and physicochemical microenvironments to study biofilms in general. In this review, we summarize the recent progress made in microfluidics-based biofilm research, including understanding the mechanism of bacterial adhesion and biofilm development, assessment of antifouling and antimicrobial properties, development of advanced in vitro infection models, and advancement in methods to characterize biofilms. Finally, we provide a perspective on the future direction of microfluidics-assisted biofilm research.
Collapse
Affiliation(s)
- Lu Yuan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China;
| | - Hervé Straub
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| | - Liubov Shishaeva
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| |
Collapse
|
7
|
Valle NME, Nucci MP, Alves AH, Rodrigues LD, Mamani JB, Oliveira FA, Lopes CS, Lopes AT, Carreño MNP, Gamarra LF. Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis. Cells 2022; 11:cells11193101. [PMID: 36231063 PMCID: PMC9563958 DOI: 10.3390/cells11193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.
Collapse
Affiliation(s)
- Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | - Caique S. Lopes
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Alexandre T. Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Marcelo N. P. Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|