1
|
Niu J, Yan X, Bai Y, Li W, Lu G, Wang Y, Liu H, Shi Z, Liang J. Integration of Transcriptomics and WGCNA to Characterize Trichoderma harzianum-Induced Systemic Resistance in Astragalus mongholicus for Defense against Fusarium solani. Genes (Basel) 2024; 15:1180. [PMID: 39336771 PMCID: PMC11431081 DOI: 10.3390/genes15091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Beneficial fungi of the genus Trichoderma are among the most widespread biocontrol agents that induce a plant's defense response against pathogens. Fusarium solani is one of the main pathogens that can negatively affect Astragalus mongholicus production and quality. To investigate the impact of Trichoderma harzianum on Astragalus mongholicus defense responses to Fusarium solani, A. mongholicus roots under T. harzianum + F. solani (T + F) treatment and F. solani (F) treatment were sampled and subjected to transcriptomic analysis. A differential expression analysis revealed that 6361 differentially expressed genes (DEGs) responded to T. harzianum induction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 6361 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway, isoflavonoid biosynthesis pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction pathway. Pathway analysis revealed that the PR1, formononetin biosynthesis, biochanin A biosynthesis, and CHIB, ROS production, and HSP90 may be upregulated by T. harzianum and play important roles in disease resistance. Our study further revealed that the H2O2 content was significantly increased by T. harzianum induction. Formononetin and biochanin A had the potential to suppress F. solani. Weighted gene coexpression network analysis (WGCNA) revealed one module, including 58 DEGs associated with T. harzianum induction. One core hub gene, RPS25, was found to be upregulated by T. harzianum, SA (salicylic acid) and ETH (ethephon). Overall, our data indicate that T. harzianum can induce induced systemic resistance (ISR) and systemic acquired resistance (SAR) in A. mongholicus. The results of this study lay a foundation for a further understanding of the molecular mechanism by which T. harzianum induces resistance in A. mongholicus.
Collapse
Affiliation(s)
- Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Xiang Yan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuguo Bai
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Wandi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Genglong Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuanyuan Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Hongjun Liu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Jianping Liang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|