1
|
Hu C, Deng B, Fang W, Guo B, Chen P, Lu C, Dong Z, Pan M. Transgenic overexpression of bmo-miR-6498-5p increases resistance to Nosema bombycis in the silkworm, Bombyx mori. Appl Environ Microbiol 2024; 90:e0027024. [PMID: 39240120 PMCID: PMC11497792 DOI: 10.1128/aem.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/23/2024] [Indexed: 09/07/2024] Open
Abstract
Microsporidia are unfriendly microorganisms, and their infections cause considerable damage to economically or environmentally important insects like silkworms and honeybees. Thus, the identification of measures to improve host resistance to microsporidia infections is critically needed. Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with Nosema bombycis. H&E staining and RT-qPCR analyses revealed an inhibitory effect on the proliferation of N. bombycis in the transgenic larvae. Metabolomics analysis further revealed the presence of 56 differential metabolites between the two lines. KEGG analysis of these 56 metabolites found that they were involved in various amino acid and vitamin metabolism pathways. Notably, VB6 metabolism was enriched among the metabolites, and the pathway was well known for its involvement in the synthesis, interconversion, and degradation of amino acids. These suggest that miR-6498-5p modifies parasitic environments to inhibit the proliferation of N. bombycis by affecting the host amino acid metabolism. These results demonstrate the potential of microRNAs as biomolecules that can promote resistance to microsporidia and provide new insights and a new approach to generate microsporidia-resistant biological materials.IMPORTANCEMicrosporidia have an extremely wide host range and are capable of infecting a wide variety of insects and vertebrates, including humans, and their lethality to multiple species often poses significant environmental management challenge. Here, we successfully constructed a microsporidium-resistant line in the silkworm, based on the overexpression of miR-6498-5p. Our results strongly support the hypothesis that miR-6498-5p efficiently suppresses the proliferation of Nosema bombycis by regulating the host VB6 metabolism, a key pathway for enzymes involved in amino acid transport and protein metabolism. Our study provides new insights for understanding host anti-pathogen defenses toward microsporidia.
Collapse
Affiliation(s)
- Congwu Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bingyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Kundu R, Bansal Y, Singla N. The Zoonotic Potential of Fungal Pathogens: Another Dimension of the One Health Approach. Diagnostics (Basel) 2024; 14:2050. [PMID: 39335729 PMCID: PMC11431391 DOI: 10.3390/diagnostics14182050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Zoonotic diseases are caused by viruses, bacteria, fungi and parasites and they comprise about 75% of all emerging infectious diseases. These can be transmitted via the direct (scratches on skin or animal bites) or indirect mode (through environmental shedding of infectious agent by the infected animal) of transmission. Environmental changes, whether in the form of urbanization, industrialization or destruction of wildlife habitats, lead to more human invasion in wildlife areas, subsequently leading to an increased passage of animals towards human dwellings and more exposure to animals, making humans susceptible to these infections. Climate change is another major factor. Global warming and the evolving thermotolerance of fungi, adapting more to human body temperature than their saprophytic nature, is leading to the emergence of humans as new hosts for fungi. The domestication of animals, rising populations, enhanced tourism, migratory populations, intrusions into wildlife, etc., are other known factors. Zoonotic fungal infections have long been neglected and are now gaining due attention. In this review, we briefly discuss the various aspects currently known for zoonotic fungal infections and bring forth the importance of this particular issue to be addressed in a timely manner.
Collapse
Affiliation(s)
- Reetu Kundu
- Department of Cytology and Gynecological Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India;
| | - Yashik Bansal
- Department of Microbiology, MM College of Medical Sciences and Research, Sadopur, Ambala 134007, India;
| | - Nidhi Singla
- Department of Microbiology, Government Medical College Hospital, Chandigarh 160030, India
| |
Collapse
|
3
|
Huang Q, Hu W, Meng X, Chen J, Pan G. Nosema bombycis: A remarkable unicellular parasite infecting insects. J Eukaryot Microbiol 2024; 71:e13045. [PMID: 39095558 DOI: 10.1111/jeu.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wanying Hu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024; 71:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
5
|
Ataş AD, Akın-Polat Z, Gülpınar DG, Şahin N. The first evaluation of the in vitro effects of silver(I)-N-heterocyclic carbene complexes on Encephalitozoon intestinalis and Leishmania major promastigotes. J Biol Inorg Chem 2024; 29:499-509. [PMID: 38918208 PMCID: PMC11343777 DOI: 10.1007/s00775-024-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Encephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.
Collapse
Affiliation(s)
- Ahmet Duran Ataş
- Departments of Parasitology, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Zübeyda Akın-Polat
- Departments of Parasitology, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey.
| | - Derya Gül Gülpınar
- Departments of Parasitology, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Neslihan Şahin
- Department of Science Education, Faculty of Education, Cumhuriyet University, 58040, Sivas, Turkey.
| |
Collapse
|
6
|
Qazi IH, Yuan T, Yang S, Angel C, Liu J. Molecular characterization and phylogenetic analyses of MetAP2 gene and protein of Nosema bombycis isolated from Guangdong, China. Front Vet Sci 2024; 11:1429169. [PMID: 39005720 PMCID: PMC11239577 DOI: 10.3389/fvets.2024.1429169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background Pebrine, caused by microsporidium Nosema bombycis, is a devastating disease that causes serious economic damages to the sericulture industry. Studies on development of therapeutic and diagnostic options for managing pebrine in silkworms are very limited. Methionine aminopeptidase type 2 (MetAP2) of microsporidia is an essential gene for their survival and has been exploited as the cellular target of drugs such as fumagillin and its analogues in several microsporidia spp., including Nosema of honeybees. Methods In the present study, using molecular and bioinformatics tools, we performed in-depth characterization and phylogenetic analyses of MetAP2 of Nosema bombycis isolated from Guangdong province of China. Results The full length of MetAP2 gene sequence of Nosema bombycis (Guangdong isolate) was found to be 1278 base pairs (bp), including an open reading frame of 1,077 bp, encoding a total of 358 amino acids. The bioinformatics analyses predicted the presence of typical alpha-helix structural elements, and absence of transmembrane domains and signal peptides. Additionally, other characteristics of a stable protein were also predicted. The homology-based 3D models of MetAP2 of Nosema bombycis (Guangdong isolate) with high accuracy and reliability were developed. The MetAP2 protein was expressed and purified. The observed molecular weight of MetAP2 protein was found to be ~43-45 kDa. The phylogenetic analyses showed that MetAP2 gene and amino acids sequences of Nosema bombycis (Guangdong isolate) shared a close evolutionary relationship with Nosema spp. of wild silkworms, but it was divergent from microsporidian spp. of other insects, Aspergillus spp., Saccharomyces cerevisiae, and higher animals including humans. These analyses indicated that the conservation and evolutionary relationships of MetAP2 are closely linked to the species relationships. Conclusion This study provides solid foundational information that could be helpful in optimization and development of diagnostic and treatment options for managing the threat of Nosema bombycis infection in sericulture industry of China.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sijia Yang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Christiana Angel
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Senderskiy IV, Dolgikh VV, Ismatullaeva DA, Mirzakhodjaev BA, Nikitina AP, Pankratov DL. Treatment of Microsporidium Nosema bombycis Spores with the New Antiseptic M250 Helps to Avoid Bacterial and Fungal Contamination of Infected Cultures without Affecting Parasite Polar Tube Extrusion. Microorganisms 2024; 12:154. [PMID: 38257981 PMCID: PMC10819227 DOI: 10.3390/microorganisms12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Microsporidia are a group of widespread eukaryotic spore-forming intracellular parasites of great economic and scientific importance. Since microsporidia cannot be cultured outside of a host cell, the search for new antimicrosporidian drugs requires an effective antiseptic to sterilize microsporidian spores to infect cell lines. Here, we show that a new polyhexamethylene guanidine derivative M250, which is active against fungi and bacteria at a concentration of 0.5-1 mg/L, is more than 1000 times less effective against spores of the microsporidium Nosema bombycis, a highly virulent pathogen of the silkworm Bombyx mori (LC50 is 0.173%). Treatment of N. bombycis spores that were isolated non-sterilely from silkworm caterpillars with 0.1% M250 solution does not reduce the rate of spore polar tube extrusion. However, it completely prevents contamination of the Sf-900 III cell culture medium by microorganisms in the presence of antibiotics. The addition of untreated spores to the medium results in contamination, whether antibiotics are present or not. Since 0.1% M250 does not affect spore discharging, this compound may be promising for preventing bacterial and fungal contamination of microsporidia-infected cell cultures.
Collapse
Affiliation(s)
- Igor V. Senderskiy
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia;
| | - Viacheslav V. Dolgikh
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia;
| | - Diloram A. Ismatullaeva
- Scientific Research Institute of Sericulture, Ipakchi Str. 1, Tashkent 100069, Uzbekistan; (D.A.I.); (B.A.M.)
| | - Bakhtiyar A. Mirzakhodjaev
- Scientific Research Institute of Sericulture, Ipakchi Str. 1, Tashkent 100069, Uzbekistan; (D.A.I.); (B.A.M.)
| | - Anastasiia P. Nikitina
- Department of Microbiology and Virology, Pavlov First Saint-Petersburg State Medical University, L’vaTolstogo Str. 6-8, 197022 Saint-Petersburg, Russia; (A.P.N.); (D.L.P.)
| | - Danil L. Pankratov
- Department of Microbiology and Virology, Pavlov First Saint-Petersburg State Medical University, L’vaTolstogo Str. 6-8, 197022 Saint-Petersburg, Russia; (A.P.N.); (D.L.P.)
| |
Collapse
|
8
|
Chen Y, Lv Q, Liao H, Xie Z, Hong L, Qi L, Pan G, Long M, Zhou Z. The microsporidian polar tube: origin, structure, composition, function, and application. Parasit Vectors 2023; 16:305. [PMID: 37649053 PMCID: PMC10468886 DOI: 10.1186/s13071-023-05908-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Microsporidia are a class of obligate intracellular parasitic unicellular eukaryotes that infect a variety of hosts, even including humans. Although different species of microsporidia differ in host range and specificity, they all share a similar infection organelle, the polar tube, which is also defined as the polar filament in mature spores. In response to the appropriate environmental stimulation, the spore germinates with the polar filament everted, forming a hollow polar tube, and then the infectious cargo is transported into host cells via the polar tube. Hence, the polar tube plays a key role in microsporidian infection. Here, we review the origin, structure, composition, function, and application of the microsporidian polar tube, focusing on the origin of the polar filament, the structural differences between the polar filament and polar tube, and the characteristics of polar tube proteins. Comparing the three-dimensional structure of PTP6 homologous proteins provides new insight for the screening of additional novel polar tube proteins with low sequence similarity in microsporidia. In addition, the interaction of the polar tube with the spore wall and the host are summarized to better understand the infection mechanism of microsporidia. Due to the specificity of polar tube proteins, they are also used as the target in the diagnosis and prevention of microsporidiosis. With the present findings, we propose a future study on the polar tube of microsporidia.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongjie Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Zhengkai Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Liuyi Hong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Lei Qi
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan, 250012, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
9
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
10
|
Paria P, Tassanakajon A. Identification of Potential Druggable Targets and Structure-Based Virtual Screening for Drug-like Molecules against the Shrimp Pathogen Enterocytozoon hepatopenaei. Int J Mol Sci 2023; 24:ijms24021412. [PMID: 36674953 PMCID: PMC9867128 DOI: 10.3390/ijms24021412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Enterocytozoon hepatopenaei (EHP) causes slow growth syndrome in shrimp, resulting in huge economic losses for the global shrimp industry. Despite worldwide reports, there are no effective therapeutics for controlling EHP infections. In this study, five potential druggable targets of EHP, namely, aquaporin (AQP), cytidine triphosphate (CTP) synthase, thymidine kinase (TK), methionine aminopeptidase2 (MetAP2), and dihydrofolate reductase (DHFR), were identified via functional classification of the whole EHP proteome. The three-dimensional structures of the proteins were constructed using the artificial-intelligence-based program AlphaFold 2. Following the prediction of druggable sites, the ZINC15 and ChEMBL databases were screened against targets using docking-based virtual screening. Molecules with affinity scores ≥ 7.5 and numbers of interactions ≥ 9 were initially selected and subsequently enriched based on their ADMET properties and electrostatic complementarities. Five compounds were finally selected against each target based on their complex stabilities and binding energies. The compounds CHEMBL3703838, CHEMBL2132563, and CHEMBL133039 were selected against AQP; CHEMBL1091856, CHEMBL1162979, and CHEMBL525202 against CTP synthase; CHEMBL4078273, CHEMBL1683320, and CHEMBL3674540 against TK; CHEMBL340488, CHEMBL1966988, and ZINC000828645375 against DHFR; and CHEMBL3913373, ZINC000016682972, and CHEMBL3142997 against MetAP2.The compounds exhibited high stabilities and low binding free energies, indicating their abilities to suppress EHP infections; however, further validation is necessary for determining their efficacy.
Collapse
|
11
|
Doboși AA, Bel LV, Paștiu AI, Pusta DL. A Review of Encephalitozoon cuniculi in Domestic Rabbits ( Oryctolagus cuniculus)-Biology, Clinical Signs, Diagnostic Techniques, Treatment, and Prevention. Pathogens 2022; 11:pathogens11121486. [PMID: 36558820 PMCID: PMC9785705 DOI: 10.3390/pathogens11121486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Encephalitozoon cuniculi is a eukaryote, unicellular, spore-forming, obligate intracellular microorganism of the phylum Microsporidia, with domestic rabbits as its main host. Another important species in which this pathogen has been identified are humans, the infection being therefore called a "zoonosis". The transmission takes place via the horizontal route or the vertical route, and cell-mediated immunity plays the biggest role in the infected hosts' protection. Encephalitozoonosis can manifest itself as an acute infection, with neurological signs, renal signs, and ocular lesions, or as a chronic or subclinical infection, which is usually the case for asymptomatic carriers. The diagnostic techniques usually carried out are histological examination, serological tests, and molecular genetic techniques. The treatment of encephalitozoonosis is usually symptomatic, with unrewarding results, and prevention methods include periodical serological screening, prophylactic administration of fenbendazole, and maintenance of a clean environment. The purpose of this article is to review the current data regarding the pathogenesis, host immunity, clinical signs, diagnostic methods, treatment, and prevention methods of encephalitozoonosis in the domestic rabbit, as well as to analyze the prevalence of this disease in different countries of the world.
Collapse
Affiliation(s)
- Anca-Alexandra Doboși
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
- New Companion Animals Veterinary Clinic, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Lucia-Victoria Bel
- New Companion Animals Veterinary Clinic, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Anamaria Ioana Paștiu
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Dana Liana Pusta
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Zhang T, Ren G, Zhou H, Qiang Y, Li J, Zhang Y, Li T, Zhou Y, Wang Y, Lai X, Lei S, Tan F, Liu R, Li W, He J, Zhao W, Zhu C, Lu G. Molecular prevalence and genetic diversity analysis of Enterocytozoon bieneusi in humans in Hainan Province, China: High diversity and unique endemic genetic characteristics. Front Public Health 2022; 10:1007130. [PMID: 36148343 PMCID: PMC9485493 DOI: 10.3389/fpubh.2022.1007130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 01/27/2023] Open
Abstract
Enterocytozoon bieneusi is a zoonotic pathogen commonly found in humans and animals all over the world. Here, we investigated the occurrence and genotype constitute of E. bieneusi among the individuals from Haikou city of Hainan, China. A total of 1,264 fecal samples of humans were collected, including 628 samples from patients with diarrhea (325 adults and 303 children) and 636 samples from the asymptomatic population (383 college students and 253 kindergarten children). E. bieneusi was detected using nested polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) region. A phylogenetic tree was constructed using a neighbor-joining tree construction method. The overall prevalence of E. bieneusi was 3.7% (47/1,264), while it was 5.6% in the patients with diarrhea (5.8% in adults and 5.3% in children) and 1.9% in the asymptomatic population (2.9% in college students and 0.4% in kindergarten children). The prevalence of E. bieneusi in humans with diarrhea was significantly higher than that in the asymptomatic population (χ2 = 36.9; P < 0.05). A total of 28 genotypes were identified, including ten known genotypes: CHG2 (n = 3), CHG3 (n = 5), CHG5 (n = 10), CM21 (n = 1), EbpA (n = 1), EbpC (n = 1), PigEBITS4 (n = 1), PigEBITS7 (n = 1), SHR1 (n = 4), Type IV (n = 2), and 18 novel genotypes (HNH-1 to HNH-18; one each). All these genotypes were categorized into three groups, including group 1 (n = 6), group 2 (n = 14), and group 13 (n = 8). This was the first study on the identification of E. bieneusi among humans in Hainan, China. The correlation between E. bieneusi infection and diarrhea was observed. The high diversity and distinctive distribution of E. bieneusi genotypes found in this study reflected the unique epidemic genetic characteristics of E. bieneusi in humans living in Hainan.
Collapse
Affiliation(s)
- Tiemin Zhang
- Department of General Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guangxu Ren
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Huanhuan Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Yu Qiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Jiaqi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Yun Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Yunfei Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Yuan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Xiuyi Lai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Shen Lei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China
| | - Feng Tan
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenting Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jing He
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Zhao
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China,*Correspondence: Wei Zhao
| | - Chuanlong Zhu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China,Chuanlong Zhu
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China,Department of Pathogenic Biology, Hainan Medical University, Haikou, China,Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China,Gang Lu
| |
Collapse
|
13
|
Estrella-Parra EA, Arreola R, Álvarez-Sánchez ME, Torres-Romero JC, Rojas-Espinosa O, De la Cruz-Santiago JA, Martinez-Benitez MB, López-Camarillo C, Lara-Riegos JC, Arana-Argáez VE, Ramírez-Camacho MA. Natural marine products as antiprotozoal agents against amitochondrial parasites. Int J Parasitol Drugs Drug Resist 2022; 19:40-46. [PMID: 35636129 PMCID: PMC9157375 DOI: 10.1016/j.ijpddr.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules. Natural active components of marine organisms have specific biological properties. The marine compounds have multiple anti-parasitic activity. The semi-synthetic derivatives of natural active components of marine organism are candidates for new drugs.
Collapse
Affiliation(s)
- Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. De los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Maria Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | | | - Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), 11340, Ciudad de México, Mexico
| | - José Alberto De la Cruz-Santiago
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Máximo Berto Martinez-Benitez
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Cesar López-Camarillo
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | | | | | | |
Collapse
|