1
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
2
|
Moliné M, Libkind D, van Broock MR. Two at once: simultaneous increased production of astaxanthin and mycosporines in a single batch culture using a Phaffia rhodozyma mutant strain. World J Microbiol Biotechnol 2024; 40:87. [PMID: 38329645 DOI: 10.1007/s11274-024-03901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast characterized by its production of the carotenoid pigment astaxanthin, which holds high commercial value for its significance in aquaculture, cosmetics and as nutraceutics, and the UV-B-absorbing compound mycosporine-glutaminol-glucoside (MGG), which is of great biotechnological relevance for its incorporation into natural sunscreens. However, the industrial exploitation has been limited to the production of astaxanthin in small quantities. On the other hand, the accumulation of MGG in P. rhodozyma was recently reported and could add value to the simultaneous production of both metabolites. In this work, we obtain a mutant strain that overproduces both compounds, furthermore we determined how the accumulation of each is affected by the carbon-to-nitrogen ratio and six biotic and abiotic factors. The mutant obtained produces 159% more astaxanthin (470.1 μg g-1) and 220% more MGG (57.9 mg g-1) than the parental strain (295.8 μg g-1 and 26.2 mg g-1 respectively). Furthermore, we establish that the carotenoids accumulate during the exponential growth phase while MGG accumulates during the stationary phase. The carbon-to-nitrogen ratio affects each metabolite differently, high ratios favoring carotenoid accumulation while low ratios favoring MGG accumulation. Finally, the accumulation of both metabolites is stimulated only by photosynthetically active radiation and low concentrations of hydrogen peroxide. The mutant strain obtained is the first hyper-productive mutant capable of accumulating high concentrations of MGG and astaxanthin described to date. The characterization of how both compounds accumulate during growth and the factors that stimulate their accumulation, are the first steps toward the future commercial exploitation of strains for the simultaneous production of two biotechnologically important metabolites.
Collapse
Affiliation(s)
- M Moliné
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina.
| | - D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina
| | - M R van Broock
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina
| |
Collapse
|
3
|
Ding R, Huang R, Su H, Li J, Li F, Wang S. Screening of astaxanthin-overproducing Xanthophyllomyces dendrorhous strains via iterative ARTP mutagenesis and cell sorting by flow cytometry. J Appl Microbiol 2024; 135:lxae020. [PMID: 38271605 DOI: 10.1093/jambio/lxae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
AIMS The astaxanthin-producing yeast Xanthophyllomyces dendrorhous is widely used in aquaculture. Due to the production of carotenoid, this yeast shows visible color; however, high-throughput approaches for identification of astaxanthin-overproducing strains remain rare. METHODS AND RESULTS This study verified an effective approach to identify astaxanthin-overproducing mutants of X. dendrorhous by flow cytometry (FCM) and cell sorting. First, the mutant libraries were generated by atmospheric and room-temperature plasma (ARTP) mutagenesis. Second, a highly direct correlation between the concentrations of intracellular astaxanthin and the levels of emitting fluorescence was constructed by testing a variety of astaxanthin-contained populations via FCM and cell sorting. Third, iterative cell sorting efficiently improves the identification of astaxanthin-overproducing strains. Finally, two mutants producing 4.96 mg astaxanthin g-1 DCW (dry cell weight) and 5.30 mg astaxanthin g-1 DCW were obtained, which were 25.3% and 33.8% higher than that of the original strain, respectively. CONCLUSIONS This study demonstrated that iterative ARTP mutagenesis along with cell sorting by FCM is effective for identifying astaxanthin-overproduction strains.
Collapse
Affiliation(s)
- Ruirui Ding
- Key Laboratory of Biofuels, Qingdao Carbon One Biorefining Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
- Shandong Energy Institute, Qingdao 266100, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266100, China
| | - Ruilin Huang
- Key Laboratory of Biofuels, Qingdao Carbon One Biorefining Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
- Shandong Energy Institute, Qingdao 266100, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266100, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, 100039, China
| | - Hang Su
- Key Laboratory of Biofuels, Qingdao Carbon One Biorefining Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
- Shandong Energy Institute, Qingdao 266100, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266100, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, 100039, China
| | - Jiawen Li
- Key Laboratory of Biofuels, Qingdao Carbon One Biorefining Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
- Shandong Energy Institute, Qingdao 266100, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266100, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Carbon One Biorefining Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
- Shandong Energy Institute, Qingdao 266100, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266100, China
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Carbon One Biorefining Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
- Shandong Energy Institute, Qingdao 266100, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266100, China
| |
Collapse
|
4
|
Yang L, Yang HY, You L, Ni H, Jiang ZD, Du XP, Zhu YB, Zheng MJ, Li LJ, Lin R, Li ZP, Li QB. Transcriptomics analysis and fed-batch regulation of high astaxanthin-producing Phaffia rhodozyma/Xanthophyllomyces dendrorhous obtained through adaptive laboratory evolution. J Ind Microbiol Biotechnol 2023; 50:kuad015. [PMID: 37580133 PMCID: PMC10448994 DOI: 10.1093/jimb/kuad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.
Collapse
Affiliation(s)
- Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Hao-Yi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ze-Dong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Xi-Ping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yan-Bing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ming-Jing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Li-Jun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen 361008, China
| | - Zhi-Peng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qing-Biao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| |
Collapse
|