1
|
Büttner H, Rassbach J, Schultz C, Popp J, Gressler M, Hertweck C. Beneficial Soil Fungus Kills Predatory Nematodes with Dehydropeptides Translocating into the Animal Gut. J Am Chem Soc 2024; 146:34702-34710. [PMID: 39652677 DOI: 10.1021/jacs.4c12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Mortierella alpina is a mold fungus that has gained attention for its positive correlation with soil health, plant growth, and applications as a crop biocontrol agent to suppress the threats of nematode pests. To date, the mechanisms underlying the protective traits of M. alpina against these plant parasites have remained elusive. Here we report that abundantly produced peptidic biosurfactants, malpinin A-D, exhibit robust inhibitory activity against nematodes. Nematode assays with malpinin congeners and chemically synthesized analogues revealed that the dehydro amino acid is critical for activity, whereas the N-terminal amino acid residues modulate the lipophilicity. Complementary imaging by fluorescence microscopy and Raman microspectroscopy, using externally fluorescence-labeled, semisynthetic malpinin or a biosynthetically alkyne-tagged probe generated by precursor-directed biosynthesis, visualized the translocation and enrichment of malpinin in the gut of the model nematode Caenorhabditis elegans. Our findings provide valuable insight into the use of M. alpina as a biocontrol agent, emphasizing the ecologically significant role of malpinins as a protective trait. In addition to solving a long-standing riddle, these findings have translational value for applications in agriculture.
Collapse
Affiliation(s)
- Hannah Büttner
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Johannes Rassbach
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Pharmacy, Pharmaceutical Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Markus Gressler
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Pharmacy, Pharmaceutical Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Jiang J, Fan G, Wen R, Liu T, He S, Yang S, Zi S. Effects of osthole and Bacillus amyloliquefaciens on the physiological growth of Panax quinquefolius in a forest. Front Microbiol 2024; 15:1497987. [PMID: 39726959 PMCID: PMC11670745 DOI: 10.3389/fmicb.2024.1497987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The biological activities of osthole have been widely reported in recent years. However, few studies have been conducted on osthole in agriculture, and its effects on plant growth have little been reported. Methods Three experimental treatments were set up in this experiment: blank control (CK), osthole (CLS), and B. amyloliquefaciens (LKWS). In this study, the effects of osthole and Bacillus amyloliquefaciens on the growth parameters, photosynthesis, antioxidant enzyme activities, disease incidence, and microbiome of forested P. quinquefolius were tested. Results This study demonstrates that the use of osthole and B. amyloliquefaciens significantly improved the growth of Panax quinquefolius in a forest compared to that in the control treatment, increased the total chlorophyll and carotenoid content of P. quinquefolius, significantly increased its net photosynthetic rate, and decreased the stomatal conductance and intercellular CO2 levels. In addition, the use of osthole and B. amyloliquefaciens significantly improved ascorbate peroxidase and peroxidase (POD) activities, enhanced antioxidant activities of the P. quinquefolius POD, and reduced the disease incidence and index of American ginseng anthracnose. Based on the American ginseng microbiome analysis, the use of osthole and B. amyloliquefaciens could change the structure of the American ginseng microbial community, significantly increase the diversity of American ginseng bacteria, significantly decrease the diversity of American ginseng fungi, stimulate the recruitment of more growth-promoting microorganisms to American ginseng, and build a more stable microbial network in American ginseng. Discussion In conclusion, we found that the application of osthole had a positive effect on the growth of American ginseng, providing a theoretical basis for its subsequent application in agriculture.
Collapse
Affiliation(s)
- Jinhui Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Guangxiong Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Rong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University (YNAU), Kunming, China
| | - Shengchao Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, China
| |
Collapse
|
3
|
Bueno de Mesquita CP, Walsh CM, Attia Z, Koehler BD, Tarble ZJ, Van Tassel DL, Kane NC, Hulke BS. Environment, plant genetics, and their interaction shape important aspects of sunflower rhizosphere microbial communities. Appl Environ Microbiol 2024; 90:e0163524. [PMID: 39445779 DOI: 10.1128/aem.01635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Associations with soil microorganisms are crucial for plants' overall health and functioning. While much work has been done to understand drivers of rhizosphere microbiome structure and function, the relative importance of geography, climate, soil properties, and plant genetics remains unclear, as results have been mixed and comprehensive studies across many sites and genotypes are limited. Rhizosphere microbiomes are crucial for crop resistance to pathogens, stress tolerance, nutrient availability, and ultimately yield. Here, we quantify the relative roles of plant genotype, environment, and their interaction in shaping soil rhizosphere communities, using 16S and ITS gene sequencing of rhizosphere soils from 10 genotypes of cultivated sunflower (Helianthus annuus) at 15 sites across the Great Plains of the United States. While site generally outweighed genotype overall in terms of effects on archaeal, bacterial, and fungal richness, community composition, and taxa relative abundances, there was also a significant interaction such that genotype exerted a significant influence on archaeal, bacterial, and fungal microbiomes in certain sites. Site effects were attributed to a combination of spatial distance and differences in climate and soil properties. Microbial taxa that were previously associated with resistance to the fungal necrotrophic pathogen Sclerotinia were present in most sites but differed significantly in relative abundance across sites. Our results have implications for plant breeding and agronomic microbiome manipulations for agricultural improvement across different geographic regions.IMPORTANCEDespite the importance of plant breeding in agriculture, we still have a limited understanding of how plant genetic variation shapes soil microbiome composition across broad geographic regions. Using 15 sites across the Great Plains of North America, we show that cultivated sunflower rhizosphere archaeal, bacterial, and fungal communities are driven primarily by site soil and climatic differences, but genotype can interact with site to influence the composition, especially in warmer and drier sites with lower overall microbial richness. We also show that all taxa that were previously found to be associated with resistance to the fungal pathogen Sclerotinia sclerotiorum were widespread but significantly affected by site, while a subset was also significantly affected by genotype. Our results contribute to a broader understanding of rhizosphere archaeal, bacterial, and fungal community assembly and provide foundational knowledge for plant breeding efforts and potential future microbiome manipulations in agriculture.
Collapse
Affiliation(s)
| | - Corinne M Walsh
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Ziv Attia
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Brady D Koehler
- USDA-ARS Sunflower Improvement Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| | - Zachary J Tarble
- USDA-ARS Sunflower Improvement Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| | | | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Brent S Hulke
- USDA-ARS Sunflower Improvement Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| |
Collapse
|
4
|
Wang Z, Wang S, Yang H. Understanding the Pathogenesis, Biocontrol Mechanisms, and Factors Influencing Biocontrol Effectiveness for Soil-Borne Diseases in Panax Plants. Microorganisms 2024; 12:2278. [PMID: 39597667 PMCID: PMC11596276 DOI: 10.3390/microorganisms12112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Panax plants are known for their significant medicinal and economic value. Being perennial, they are prone to soil-borne diseases during cultivation. However, there has been limited research on the pathogenesis of soil-borne diseases and the diversity of pathogens. While biological control has gained attention for its efficacy and environmental benefits, the factors affecting its efficiency still need thorough evaluation. This review summarizes the influence of biotic factors, such as pathogens and hosts, and environmental factors on the occurrence of soil-borne diseases and pathogen diversity. Additionally, we synthesized bacterial, actinobacterial, and fungal diversity for the biocontrol of soil-borne diseases and their functional mechanisms. Moreover, the review delves into the factors influencing the efficacy of biocontrol, including microbial species, the inoculation method and inoculation volume, and inoculant composition. This article serves as a valuable resource for enhancing the efficiency of biological control and optimizing strategies for managing soil-borne diseases in Panax cultivation in the future.
Collapse
Affiliation(s)
| | | | - Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.W.); (S.W.)
| |
Collapse
|
5
|
Li J, Chen Y, Zhao G, Chen Y, Zhang N, Yu D, Li X. Herbal materials used as soil amendments alleviate root rot of Panax ginseng. Sci Rep 2024; 14:23825. [PMID: 39394247 PMCID: PMC11470044 DOI: 10.1038/s41598-024-74304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Root rot is a serious soil-borne fungal disease that seriously affects the yield and quality of Panxa ginseng. To develop a sustainable strategy for alleviating ginseng root rot, an herb-based soil amendment is suggested in this study. Mixed powers of medicinal herbs (MP) and corn stalks (CS) were used as soil amendments, respectively, along with a control group (CK) without treatment. The application of MP and CS led to significant relief from ginseng root rot. The disease index (%) represents both the incidence rate and symptom severity of the disease. The disease index of the MP and CS group was 18.52% and 25.93%, respectively, lower than that of CK (40.74%). Correspondingly, three soil enzyme activities improved; the antifungal components in the soil increased; and the relative abundances of root rot pathogens decreased in response to MP Soil enzyme activities were negatively correlated with disease grades. MP group also led to possible interactive changes in the communities of soil fungi and chemical components. In conclusion, our results suggest that the use of herb-based soil amendments has significant potential as an ecological and effective approach to controlling root rot disease of ginseng by the changing rhizosphere fungal community and soil compositions.
Collapse
Affiliation(s)
- Jie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China
| | - Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, No. 1076, Yuhua Rd, Kunming, 650500, China
| | - Guiping Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, No. 1076, Yuhua Rd, Kunming, 650500, China
| | - Yanguo Chen
- China Medico corporation, No. 18, Gaofu Rd, Tianjin, 300301, China
| | - Naiwu Zhang
- China Medico corporation, No. 18, Gaofu Rd, Tianjin, 300301, China
| | - Dade Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China.
| |
Collapse
|
6
|
Zhu XQ, Chen Y, Jia M, Dai HJ, Zhou YB, Yang HW, Zhou P, Du Y, Wang G, Bai YX, Wang N. Managing tobacco black shank disease using biochar: direct toxicity and indirect ecological mechanisms. Microbiol Spectr 2024; 12:e0014924. [PMID: 39212424 PMCID: PMC11448098 DOI: 10.1128/spectrum.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Black shank disease in tobacco, caused by Phytophthora nicotianae, can lead to yield losses of 30%-50% upon outbreak. Recently, biochar derived from agricultural waste has shown significant potential in controlling soil-borne diseases, though its mechanisms remain unclear. Over a 3-year observation period, we found that the incidence of black shank was significantly lower in plots amended with biochar compared with normal cultivation plots. To investigate the underlying mechanisms, we studied both the direct and indirect effects of biochar on black shank. Direct antifungal assays indicated that biochar reduced the total number of sporangia by 53.91%. Further pot experiments revealed a 62.34% reduction in the P. nicotianae population in the soil following biochar application. Additionally, biochar application led to notable changes in soil physicochemical properties and microbial community composition. Microbial species analysis showed that biochar promoted the aggregation of beneficial microbes such as Sphingomonas, Flavisolibacter, and Mucoromycota. Functional predictions using the PICRUSt 2 software revealed that biochar enhances bacterial functions related to antimicrobial substance synthesis (Tetracycline biosynthesis), detoxification metabolism (D-arginine and D-ornithine metabolism, arginine and proline metabolism), and lipid and fatty acid metabolism (Lipopolysaccharide biosynthesis, fatty acid biosynthesis), while fungal functions showed no significant changes. This suggests that rhizosphere bacteria play a more prominent role in the suppression of black shank by biochar, a finding supported by partial least squares path modeling analysis. Therefore, we hypothesize that biochar not only directly inhibits P. nicotianae growth but also regulates the composition of the rhizosphere microbial community, inducing the production of antimicrobial substances by rhizosphere bacteria, effectively preventing P. nicotianae invasion.IMPORTANCEBlack shank, a global soil-borne fungal disease in tobacco, currently lacks effective control methods. Notably, biochar derived from agricultural waste has shown significant potential in controlling soil-borne diseases. Over a 3-year observation period, we found that plots amended with biochar had a significantly lower incidence of black shank compared with normal cultivation plots. However, the mechanisms of disease suppression remained unclear. Through in vitro antifungal assays and pot experiments, we discovered that tobacco-derived biochar can directly inhibit the growth of the pathogen. Additionally, biochar regulates the composition of the rhizosphere microbial community, inducing rhizosphere bacteria to produce antimicrobial substances, effectively preventing pathogen invasion. This discovery reveals both the direct and indirect mechanisms by which biochar suppresses black shank in tobacco. It provides a scientific basis for developing green control technologies for black shank and offers theoretical support for the application of biochar in managing soil-borne diseases in tobacco cultivation areas.
Collapse
Affiliation(s)
- Xuan-Quan Zhu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yan Chen
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Meng Jia
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Hui-Juan Dai
- China Tobacco Hebei Industrial Co. Ltd., Shijiazhuang, China
| | - Yan-Bin Zhou
- China Tobacco Hebei Industrial Co. Ltd., Shijiazhuang, China
| | - Huan-Wen Yang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Peng Zhou
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yu Du
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yu-Xiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Na Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Liu X, Du C, Tan Y, Yue C, Fan H. Interplant communication increases aphid resistance and alters rhizospheric microbes in neighboring plants of aphid-infested cucumbers. PEST MANAGEMENT SCIENCE 2024; 80:5005-5013. [PMID: 38845469 DOI: 10.1002/ps.8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Aphis gossypii Glover is a prevalent phytophagous insect that inflicts significant damage on cucumber plants. Recent studies have provided insights into plant communication and signal transduction within conspecifics. However, understanding of the effect of these communication mechanisms on adjacent cucumbers and their resident aphids, especially in the context of an aphid infestation, is still in its early stages. RESULTS Utilizing a partitioned root configuration, a tendency for aphids to gather on nearby cucumber leaves of non-infested plants was observed. Furthermore, neighboring plants near aphid-infested cucumber plants showed a reduction in aphid reproduction rates. Concurrently, these plants exhibited a significant increase in reactive oxygen species (ROS) levels, along with enhanced defensive and antioxidant enzymatic responses. Analysis of the microbial community in the rhizosphere showed significant differences in species composition among the samples. Among these, the bacterial families Microbacteriaceae and Rhizobiaceae, along with the fungal species Leucocoprinus ianthinus and Mortierella globalpina, exhibited increases in their relative abundance in cucumber seedlings located near aphid-infested plants. Significantly, this study unveiled robust correlations between dominant microbial phyla and physiological indicators, primarily associated with aphid resistance mechanisms in plants. CONCLUSION The results show that aphid-infested cucumber plants trigger oxidative stress responses in adjacent seedlings through complex interplant communication mechanisms. In addition, these plants cause changes in the composition of the rhizospheric microbial community and the physiological activity of neighboring plants, consequently boosting their natural resistance to aphids. This study provides essential theoretical foundations to guide the development of sustainable strategies for managing cucumber aphids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Qing Z, Jida Y, Chengxiu F, Yanli Y, Xia L, Sihe D. Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. THE PLANT PATHOLOGY JOURNAL 2024; 40:498-511. [PMID: 39397304 PMCID: PMC11471926 DOI: 10.5423/ppj.oa.06.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.
Collapse
Affiliation(s)
- Zhang Qing
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Yang Jida
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Fu Chengxiu
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Yang Yanli
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
| | - Liu Xia
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
| | - Deng Sihe
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| |
Collapse
|
9
|
Jia X, Li M, Zhang Q, Jia M, Hong L, Zhang S, Wang Y, Luo Y, Wang T, Ye J, Wang H. Analysis of rhizosphere soil microbial diversity and its functions between Dahongpao mother tree and cutting Dahongpao. FRONTIERS IN PLANT SCIENCE 2024; 15:1444436. [PMID: 39309180 PMCID: PMC11412831 DOI: 10.3389/fpls.2024.1444436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
Dahongpao mother tree (Camellia sinensis (L.) O. Ktze) is a representative of Wuyi rock tea. Whether there is a difference in rhizosphere soil microbial diversity and function between asexually propagated cuttings of Dahongpao (PD) and the parent Dahongpao mother tree (MD) has not been reported. In this study, high throughput sequencing technology was used to analyze rhizosphere soil microbial diversity, functions and their relationship with soil available nutrients and enzyme activities in MD and PD. The results showed that available nitrogen, phosphorus and potassium contents and urease, protease, acid phosphatase and sucrase activities of rhizosphere soils in MD were significantly higher than those in PD. Both bacterial and fungal diversity were higher in rhizosphere soils in MD than in PD, and secondly, the bacterial community structure was less stable while the fungal community structure was more stable in PD compared to MD. There were significant differences between MD and PD tea tree rhizosphere soils in 6 genera of characteristic bacteria and 4 genera of characteristic fungi. The results of function and interaction effect analysis showed that the rhizosphere soil available nutrient content and enzyme activities in MD were significantly higher than those in PD, and their contributions mainly originated from Pirellula and Acidisphaera of characteristic bacteria and Alatospora of characteristic fungi. Secondly, MD maybe had a stronger ability to inhibit soil pathogens than PD, with the main contribution coming from Scopulariopsis and Tolypocladium of characteristic fungi. Overall, compared with PD, soil texture in MD was relatively better, and its soil nutrient cycling-related enzyme activities were stronger, which was more favorable to soil nutrient cycling and increased the available nutrient content of the soil, which in turn promoted the growth of tea trees. This study provides an important reference for the planting and management of tea tree cuttings and microbial regulation of tea tree growth.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Zhang
- College of Life Science, Longyan University, Longyan, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangxin Luo
- College of Life Science, Longyan University, Longyan, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Longyan University, Longyan, China
| |
Collapse
|
10
|
Li X, Liu Q, Gao Y, Zang P, Zheng T. Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity. BMC PLANT BIOLOGY 2024; 24:647. [PMID: 38977968 PMCID: PMC11229274 DOI: 10.1186/s12870-024-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 2100147, China
| | - Yugang Gao
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Zheng
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
11
|
Zhang S, Chen T, Chen Y, Li S, Wang W, Zhao Y, Zhu C. A Comparative Analysis of Bacterial and Fungal Communities in Coastal and Inland Pecan Plantations. Microorganisms 2024; 12:1313. [PMID: 39065081 PMCID: PMC11279223 DOI: 10.3390/microorganisms12071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Pecan forests (Carya illinoinensis) are significant contributors to both food and oil production, and thrive in diverse soil environments, including coastal regions. However, the interplay between soil microbes and pecan forest health in coastal environments remains understudied. Therefore, we investigated soil bacterial and fungal diversity in coastal (Dafeng, DF) and inland (Guomei, GM) pecan plantations using high-throughput sequencing. The results revealed a higher microbial diversity in the DF plantation than in the GM plantation, significantly influenced by pH and edaphic factors. The dominant bacterial phyla were Proteobacteria, Acidobacteriota and Bacteroidota in the DF plantation, and Acidobacteriota, Proteobacteria, and Verrucomicrobiota in the GM plantation. Bacillus, Nitrospira and UTCFX1 were significantly more abundant bacterial genera in DF soil, whereas Candidatus Udaeobacter, HSB_OF53-F07 and ADurbBin063-1 were more prevalent in GM soil. Basidiomycota dominated fungal sequences in the GM plantation, with a higher relative abundance of Ascomycota in the DF plantation. Significant differences in fungal genus composition were observed between plantations, with Scleroderma, Hebeloma, and Naucoria being more abundant in DF soil, and Clavulina, Russula, and Inocybe in GM soil. A functional analysis revealed greater carbohydrate metabolism potential in GM plantation bacteria and a higher ectomycorrhizal fungi abundance in DF soil. Significantly positive correlations were detected between certain bacterial and fungal genera and pH and total soluble salt content, suggesting their role in pecan adaptation to coastal environments and saline-alkali stress mitigation. These findings enhance our understanding of soil microbiomes in coastal pecan plantations, and are anticipated to foster ecologically sustainable agroforestry practices and contribute to coastal marshland ecosystem management.
Collapse
Affiliation(s)
- Shijie Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Ting Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Shucheng Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, Chuzhou 233100, China;
| | - Wu Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Yuqiang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Cancan Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| |
Collapse
|
12
|
Jayasinghe H, Chang HX, Knobloch S, Yang SH, Hendalage DPB, Ariyawansa KGSU, Liu PY, Stadler M, Ariyawansa HA. Metagenomic insight to apprehend the fungal communities associated with leaf blight of Welsh onion in Taiwan. FRONTIERS IN PLANT SCIENCE 2024; 15:1352997. [PMID: 38495366 PMCID: PMC10941342 DOI: 10.3389/fpls.2024.1352997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Plants are associated with a large diversity of microbes, and these complex plant-associated microbial communities are critical for plant health. Welsh onion (Allium fistulosum L.) is one of the key and oldest vegetable crops cultivated in Taiwan. The leaf of the Welsh onion is one of the famous spices in Taiwanese cuisine, thus, it is crucial to control foliar diseases. In recent years, Welsh onion cultivation in Taiwan has been severely threatened by the occurrence of leaf blight disease, greatly affecting their yield and quality. However, the overall picture of microbiota associated with the Welsh onion plant is still not clear as most of the recent etiological investigations were heavily based on the isolation of microorganisms from diseased plants. Therefore, studying the diversity of fungal communities associated with the leaf blight symptoms of Welsh onion may provide information regarding key taxa possibly involved in the disease. Therefore, this investigation was mainly designed to understand the major fungal communities associated with leaf blight to identify key taxa potentially involved in the disease and further evaluate any shifts in both phyllosphere and rhizosphere mycobiome assembly due to foliar pathogen infection by amplicon sequencing targeting the Internal Transcribed Spacer (ITS) 1 region of the rRNA. The alpha and beta-diversity analyses were used to compare the fungal communities and significant fungal groups were recognized based on linear discriminant analyses. Based on the results of relative abundance data and co-occurrence networks in symptomatic plants we revealed that the leaf blight of Welsh onion in Sanxing, is a disease complex mainly involving Stemphylium and Colletotrichum taxa. In addition, genera such as Aspergillus, Athelia and Colletotrichum were abundantly found associated with the symptomatic rhizosphere. Alpha-diversity in some fields indicated a significant increase in species richness in the symptomatic phyllosphere compared to the asymptomatic phyllosphere. These results will broaden our knowledge of pathogens of Welsh onion associated with leaf blight symptoms and will assist in developing effective disease management strategies to control the progress of the disease.
Collapse
Affiliation(s)
- Himanshi Jayasinghe
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Stephen Knobloch
- Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany
| | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - D. P. Bhagya Hendalage
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Braunschweig, Germany
| | - Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Li J, Hou L, Zhang G, Cheng L, Liu Y. Comparative Analysis of Rhizosphere and Endosphere Fungal Communities in Healthy and Diseased Faba Bean Plants. J Fungi (Basel) 2024; 10:84. [PMID: 38276030 PMCID: PMC10817651 DOI: 10.3390/jof10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
This study used the ITS approach based on Illumina MiSeq sequencing to assess the endosphere and rhizosphere fungal communities in healthy and diseased faba bean plants. The findings indicate that the most predominant phyla in all samples were Ascomycota (49.89-99.56%) and Basidiomycota (0.33-25.78%). In healthy endosphere samples, Glomeromycota (0.08-1.17%) was the only predominant phylum. In diseased endosphere samples, Olpidiomycota (0.04-1.75%) was the only predominant phylum. At the genus level, Penicillium (0.47-35.21%) was more abundant in rhizosphere soil, while Paraphoma (3.48-91.16%) was predominant in the endosphere roots of faba bean plants. Significant differences were observed in the alpha diversity of rhizosphere samples from different germplasm resources (p < 0.05). The fungal community structures were clearly distinguished between rhizosphere and endosphere samples and between healthy and diseased endosphere samples (p < 0.05). Saccharomyces was significantly enriched in diseased endosphere samples, whereas Apiotrichum was enriched in healthy endosphere samples. Vishniacozyma and Phialophora were enriched in diseased rhizosphere samples, while Pseudogymnoascus was enriched in healthy rhizosphere samples. Diseased samples displayed more strongly correlated genera than healthy samples. Saprotrophs accounted for a larger proportion of the fungal microbes in rhizosphere soil than in endosphere roots. This study provides a better understanding of the composition and diversity of fungal communities in the rhizosphere and endosphere of faba bean plants as well as a theoretical guidance for future research on the prevention or control of faba bean root rot disease.
Collapse
Affiliation(s)
- Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Lu Hou
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Gui Zhang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yujiao Liu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
14
|
Zeng G, Wen Y, Luo C, Zhang Y, Li F, Xiong C. Plant-microorganism-soil interaction under long-term low-dose ionizing radiation. Front Microbiol 2024; 14:1331477. [PMID: 38274757 PMCID: PMC10808812 DOI: 10.3389/fmicb.2023.1331477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
As the environmental nuclear radiation pollution caused by nuclear-contaminated water discharge and other factors intensifies, more plant-microorganism-soil systems will be under long-term low-dose ionizing radiation (LLR). However, the regulatory mechanisms of the plant-microorganism-soil system under LLR are still unclear. In this study, we study a system that has been stably exposed to low-dose ionizing radiation for 10 years and investigate the response of the plant-microorganism-soil system to LLR based on the decay of the absorbed dose rate with distance. The results show that LLR affects the carbon and nitrogen migration process between plant-microorganism-soil through the "symbiotic microbial effect." The increase in the intensity of ionizing radiation led to a significant increase in the relative abundance of symbiotic fungi, such as Ectomycorrhizal fungi and Rhizobiales, which is accompanied by a significant increase in soil lignin peroxidase (LiP) activity, the C/N ratio, and C%. Meanwhile, enhanced radiation intensity causes adaptive changes in the plant functional traits. This study demonstrates that the "symbiotic microbial effect" of plant-microorganism-soil systems is an important process in terrestrial ecosystems in response to LLR.
Collapse
Affiliation(s)
- Guoqiang Zeng
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
- Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan, Chengdu University of Technology, Chengdu, China
| | - Yingzi Wen
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Chuyang Luo
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Yihong Zhang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Fei Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
- Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan, Chengdu University of Technology, Chengdu, China
| | - Chao Xiong
- Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, China
| |
Collapse
|
15
|
Shao D, Xu Y, Zhang C, Lai Z, Song L, Su J, Yang R, Jing X, Felix A, Abubakar YS, Lu G, Ye W. Identification and Biological Characteristics of Mortierella alpina Associated with Chinese Flowering Cherry ( Cerasus serrulata) Leaf Blight in China. J Fungi (Basel) 2024; 10:50. [PMID: 38248959 PMCID: PMC10817311 DOI: 10.3390/jof10010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The Chinese flowering cherry (Cerasus serrulata), an ornamental tree with established medicinal values, is observed to suffer from leaf blight within Xi'an's greenbelts. This disease threatens both the plant's growth and its ornamental appeal. In this study, 26 isolates were obtained from plants with typical leaf blight, and only 3 isolates (XA-10, XA-15, and XA-18) were found to be pathogenic, causing similar symptoms on the leaves of the host plant. Based on sequence alignment, the ITS and LSU sequences of the three selected isolates were consistent, respectively. Following morphological and molecular analyses, the three selected isolates were further identified as Mortierella alpina. The three selected isolates exhibited similar morphological characteristics, including wavy colonies with dense, milky-white aerial mycelia on PDA medium. Therefore, isolate XA-10 was used as a representative strain for subsequent experiments. The representative strain XA-10 was found to exhibit optimal growth at a temperature of 30 °C and a pH of 7.0. Host range infection tests further revealed that the representative strain XA-10 could also inflict comparable disease symptoms on both the leaves and fruits of three different Rosaceae species (Prunus persica, Pyrus bretschneideri, and Prunus salicina). This study reveals, for the first time, the causative agent of leaf blight disease affecting the Chinese flowering cherry. This provides a deeper understanding of the biology and etiology of M. alpina. This study lays a solid foundation for the sustainable control and management of leaf blight disease in the Chinese flowering cherry.
Collapse
Affiliation(s)
- Dengke Shao
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.S.); (C.Z.); (Z.L.)
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (Y.S.A.)
| | - Yuying Xu
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (Y.S.A.)
| | - Chunyuan Zhang
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.S.); (C.Z.); (Z.L.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Lai
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.S.); (C.Z.); (Z.L.)
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (Y.S.A.)
| | - Linlin Song
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (J.S.); (A.F.)
| | - Jiyu Su
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (J.S.); (A.F.)
| | - Ruixian Yang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China;
| | - Xinhong Jing
- Xi’an Greening Management Center, Xi’an 710007, China;
| | - Abah Felix
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (J.S.); (A.F.)
| | - Yakubu Saddeeq Abubakar
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (Y.S.A.)
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Guodong Lu
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.S.); (C.Z.); (Z.L.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (J.S.); (A.F.)
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.S.); (C.Z.); (Z.L.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (Y.S.A.)
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350002, China
| |
Collapse
|
16
|
Xing Y, Zhang P, Zhang W, Yu C, Luo Z. Continuous cropping of potato changed the metabolic pathway of root exudates to drive rhizosphere microflora. Front Microbiol 2024; 14:1318586. [PMID: 38249485 PMCID: PMC10797025 DOI: 10.3389/fmicb.2023.1318586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
For potato production, continuous cropping (CC) could lead to autotoxicity buildup and microflora imbalance in the field soil, which may result in failure of crops and reduction in yield. In this study, non-targeted metabolomics (via liquid chromatography with tandem mass spectrometry (LC-MS/MS)) combined with metagenomic profiling (via high-throughput amplicon sequencing) were used to evaluate correlations between metabolomics of potato root exudates and communities of bacteria and fungi around potato plants to illustrate the impacts of CC. Potato plants were grown in soil collected from fields with various CC years (0, 1, 4, and 7 years). Metabolomic analysis showed that the contents and types of potential autotoxins in potato root exudates increased significantly in CC4 and CC7 plants (i.e., grown in soils with 4 and 7 years of CC). The differentially expressed metabolites were mainly produced via alpha-linolenic acid metabolism in plant groups CC0 and CC1 (i.e., no CC or 1 year CC). The metabolomics of the groups CC4 and CC7 became dominated by styrene degradation, biosynthesis of siderophore group non-ribosomal peptides, phenylpropanoid biosynthesis, and biosynthesis of various plant secondary metabolites. Continuous cropping beyond 4 years significantly changed the bacterial and fungal communities in the soil around the potato crops, with significant reduction of beneficial bacteria and accumulation of harmful fungi. Correlations between DEMs and microflora biomarkers were established with strong significances. These results suggested that continuous cropping of potato crops changed their metabolism as reflected in the plant root exudates and drove rhizosphere microflora to directions less favorable to plant growth, and it needs to be well managed to assure potato yield.
Collapse
Affiliation(s)
- Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Pingliang Zhang
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames, IA, United States
| | - Zhuzhu Luo
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
17
|
Guo Y, Horii S, Kanematsu S. Evaluation of Soil Antagonism against the White Root Rot Fungus Rosellinia necatrix and Pathogen Mycosphere Communities in Biochar-amended Soil. Microbes Environ 2024; 39:n/a. [PMID: 39710373 DOI: 10.1264/jsme2.me24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
White root rot disease caused by Rosellinia necatrix is a growing issue in orchards, and biochar pyrolyzed from the pruned branch residues of fruit trees has potential as a soil amendment agent with a number of benefits, such as long-term carbon sequestration. However, the effects of pruned branch biochar on white root rot disease remain unclear. Therefore, we compared direct antagonism against R. necatrix between soils with and without pruned pear branch biochar using a toothpick method and then linked soil physicochemical properties and microbial communities with soil antagonism. The results obtained showed that soil antagonism against the pathogen, that is, the extinction zone of R. necatrix in mycelial toothpicks, decreased in soils amended with 20% (v/v) pruned branch biochar. Soil pH was neutralized and aeration was promoted by the biochar amendment, which may be favorable for pathogen growth. An investigation of microbial communities surrounding R. necatrix mycelia indicated that antagonistic fungi affiliated with Chaetomiaceae and Trichoderma were selectively excluded from the mycosphere community in biochar-amended soil. Therefore, the enrichment of these indigenous antagonistic fungi may be important for controlling R. necatrix. Based on the present results, we do not recommend the application of pruned branch biochar to the soil area associated with the roots of fruit trees in order to avoid increasing the risk of white root rot in orchards.
Collapse
Affiliation(s)
- Yong Guo
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO)
| | - Sachie Horii
- Institure of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Satoko Kanematsu
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
18
|
Karapetsi L, Pratsinakis E, Xirakias F, Osathanunkul M, Vagelas I, Madesis P. ITS Metabarcoding Reveals the Effects of Oregano Essential Oil on Fusarium oxysporum and Other Fungal Species in Soil Samples. PLANTS (BASEL, SWITZERLAND) 2022; 12:62. [PMID: 36616191 PMCID: PMC9824880 DOI: 10.3390/plants12010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The destructive effects of Fusarium wilts are known to affect the production of many crops. The control of Fusarium oxysporum and other soilborne pathogens was mainly based on soil fumigation (methyl bromide), which has long been prohibited and, nowadays, is based on a limited number of available fungicides due to legislation restrictions on residue tolerances and environmental impacts. Alternatively, natural and environmentally safe compounds, such as essential oils, are being investigated for their efficacy in the control of soilborne diseases. The great fungicidal ability of the oregano essential oil components (carvacrol and thymol) has been reported to inhibit the germination and the mycelial development of several fungal species, including F. oxysporum. The aim of our study was to demonstrate how the metabarcoding approach can provide valuable information about the positive or negative impacts of two different doses of oregano essential oil on Fusarium oxysporum and other fungal species which were present in the studied soil samples through the amplification of the ITS1 and ITS2 regions, which were analyzed on a MiSeq platform. A higher dose of oregano essential oil decreased the abundance of F. oxysporum, along with other fungal species, but also had negative effects on Trichoderma evansii and Mortierella chlamydospora, species with possible fungicidal properties. Soil properties, essential oil properties, the fungal composition, and interactions between fungal species should be considered as factors influencing the effectiveness of essential oils as biological control agents for soilborne pathogens.
Collapse
Affiliation(s)
- Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Nea Ionia, Greece
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Emmanouil Pratsinakis
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
- Laboratory of Agronomy, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fotis Xirakias
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Nea Ionia, Greece
| | - Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ioannis Vagelas
- Laboratory of Plant Pathology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Nea Ionia, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Nea Ionia, Greece
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| |
Collapse
|
19
|
Gao Y, Gao S, Bai Y, Meng W, Xu L. Parametarhizium hingganense, a Novel Ectomycorrhizal Fungal Species, Promotes the Growth of Mung Beans and Enhances Resistance to Disease Induced by Rhizoctonia solani. J Fungi (Basel) 2022; 8:jof8090934. [PMID: 36135659 PMCID: PMC9504979 DOI: 10.3390/jof8090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The mutualistic interactions between mycorrhizae and plants first occurred along with the terrestrialization of plants. The majority of vascular plants are in symbiosis with mycorrhizal fungi. Due to their importance to the economy and ecology, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi emerge as the most popular ones. However, the mechanism underlying the beneficial function of ECM fungi is not as clear as AM fungi. Here, the interaction between Parametarhizium hingganense, a novel fungal species isolated from forest litter, and mung bean (Vigna radiata) was studied. P. hingganense demonstrated P solubilization ability in vitro. Treatment of P. hingganense on the seeds resulted in promoted growth with enhanced P content. The hyphae of green fluorescence protein (GFP)-tagged P. hingganense were found to surround the roots and develop between cells, suggesting the establishment of an ectomycorrhizal symbiosis. Upon symbiosis with P. hingganense, the levels of jasmonic acid (JA) and gibberellin (GA1) and total phenolic and flavonoid content elevated. Meanwhile, damping off caused by Rhizoctonia solani in mycorrhizal plants was alleviated. Taken together, the above findings suggested that symbiosis with P. hingganense conferred growth promotion and priming of defense responses to host plants which should be associated with facilitated P uptake and increased JA and GA1 levels.
Collapse
Affiliation(s)
- Ying Gao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Siyu Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yang Bai
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- Correspondence: (W.M.); (L.X.)
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
- Correspondence: (W.M.); (L.X.)
| |
Collapse
|