1
|
Peng J, Chen G, Guo S, Lin Z, Zeng Y, Ren J, Wang Q, Yang W, Liang Y, Li J. Anti-Bacterial and Anti-Biofilm Activities of Essential Oil from Citrus reticulata Blanco cv. Tankan Peel Against Listeria monocytogenes. Foods 2024; 13:3841. [PMID: 39682912 DOI: 10.3390/foods13233841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, plant essential oils have been confirmed as natural inhibitors of foodborne pathogens. Citrus reticulata Blanco cv. Tankan peel essential oil (CPEO) showed anti-Listeria monocytogenes (LM) activities, and this study investigated the associated mechanisms by using high-resolution electron microscope, fluorescence spectrometer, flow cytometer, potentiometer, and transcriptome sequencing. The results showed that CPEO restrained LM growth at a minimum inhibitory concentration of 2% (v/v). The anti-LM abilities of CPEO were achieved by disrupting the permeability of the cell wall, damaging the permeability, fluidity, and integrity of the cell membrane, disturbing the membrane hydrophobic core, and destroying the membrane protein conformation. Moreover, CPEO could significantly inhibit the LM aggregation from forming biofilm by reducing the extracellular polymeric substances' (protein, polysaccharide, and eDNA) production and bacterial surface charge numbers. The RNA sequencing data indicated that LM genes involved in cell wall and membrane biosynthesis, DNA replication and repair, quorum sensing and two-component systems were expressed differently after CPEO treatment. These results suggested that CPEO could be used as a novel anti-LM agent and green preservative in the food sector. Further studies are needed to verify the anti-LM activities of CPEO in real food.
Collapse
Affiliation(s)
- Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guangwei Chen
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shaoxin Guo
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ziyuan Lin
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yue Zeng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Ren
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510900, China
| | - Qin Wang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhua Yang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongqian Liang
- School of Pharmacy, Guangdong Pharmaceutical university, Guangzhou 510006, China
| | - Jun Li
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Ben Hsouna A, Ben Akacha B, Generalić Mekinić I, Čmiková N, Ben Belgacem A, Bouteraa MT, Ben Saad R, Mnif W, Kluz MI, Kačániová M, Garzoli S. Insight into Pelargonium odoratissimum Essential Oil Preservative Properties Effect on Ground Beef. Foods 2024; 13:3181. [PMID: 39410216 PMCID: PMC11475644 DOI: 10.3390/foods13193181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pelargonium plants are very popular and well-known for their essential oils (EOs), which are used for medicinal purposes and in food. This study focused on the EO of Pelargonium odoratissimum. First, its composition and antioxidant and antimicrobial activity were evaluated, and finally, its efficacy as a natural preservative in ground beef was tested. The main EO constituents were citronellol (40.0%), nerol (15.3%), and citronellyl formate (12.6%). The antibacterial activity of POEO showed that Enterococcus faecalis ATCC 29212 was the most susceptible strain compared to the other eight strains tested. The antioxidant activity, as measured by the DPPH assay, showed a dose-dependent effect with an IC50 comparable to the standard used, gallic acid. Aerobic plate count, psychotropic bacteria, and Enterobacteriaceae, including Salmonella, were reduced by the addition of Pelargonium odoratissimum essential oils. The oxidative stability was significantly improved compared to the untreated sample. Additionally, the results for metmyoglobin demonstrated a notable preservative effect on sensory properties, including appearance, odor, color, and overall acceptability. The ability to discriminate between all samples and correlate protein and lipid oxidation processes, microbiological characteristics, and sensory measurements was made possible by principal component analysis and heat maps. This research shows the potential benefits of using POEO in the preservation of ground beef by effectively extending shelf life and improving product safety.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
| | - Mohamed Taieb Bouteraa
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
- Faculty of Sciences of Bizerte UR13ES47, University of Carthage, BP W, Bizerte 7021, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (B.B.A.); (A.B.B.); (M.T.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Maciej Ireneust Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Oliveira GDS, McManus C, Sousa HADF, Santos PHGDS, dos Santos VM. A Mini-Review of the Main Effects of Essential Oils from Citrus aurantifolia, Ocimum basilicum, and Allium sativum as Safe Antimicrobial Activity in Poultry. Animals (Basel) 2024; 14:382. [PMID: 38338025 PMCID: PMC10854582 DOI: 10.3390/ani14030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Poultry production is accompanied by the use of antimicrobial agents because no production step is free of microorganisms. In the absence of antimicrobial treatments with synthetic drugs, essential oils are among the most cited natural alternatives used to prevent and treat microbial contamination in poultry. Although there are several studies on the antimicrobial properties of essential oils, there is still no review that simultaneously compiles information on the leading antimicrobial role of essential oils from Citrus aurantifolia (CAEO), Ocimum basilicum (OBEO), and Allium sativum (ASEO) in poultry. Awareness of the antimicrobial role of these substances opens the door to encouraging their use in natural antimicrobial protocols and discouraging harmful synthetics in poultry. This review aimed to compile information on applying CAEO, OBEO, and ASEO as antimicrobials in poultry farming. The available literature suggests that these essential oils can proportionately align with the poultry industry's demands for microbiologically safe food products.
Collapse
Affiliation(s)
- Gabriel da Silva Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil; (G.d.S.O.)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil; (G.d.S.O.)
| | | | | | | |
Collapse
|
5
|
Ben Akacha B, Ben Hsouna A, Generalić Mekinić I, Ben Belgacem A, Ben Saad R, Mnif W, Kačániová M, Garzoli S. Salvia officinalis L. and Salvia sclarea Essential Oils: Chemical Composition, Biological Activities and Preservative Effects against Listeria monocytogenes Inoculated into Minced Beef Meat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3385. [PMID: 37836125 PMCID: PMC10574192 DOI: 10.3390/plants12193385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Baković M, Perković L, Matijević G, Martić A, Vujović T, Ekić S, Fumić M, Jurić S, Čož-Rakovac R, Roje M, Jokić S, Jerković I. Bioprospecting of Five Ocimum sp. Cultivars from Croatia: New Potential for Dietary and Dermatological Application with Embryotoxicity Tests. Pharmaceuticals (Basel) 2023; 16:981. [PMID: 37513893 PMCID: PMC10385215 DOI: 10.3390/ph16070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Ocimum basilicum L. is the most common Ocimum species, and it is used as an ornamental plant and in food condiments. This unique study examined the chemical composition and biological activities of six extracts from five basil cultivars, including their antimicrobial, antidiabetic, antilipidemic, neuroprotective, and anticollagenase activity. Moreover, their toxicological effects were studied using the zebrafish Danio rerio. Volatile components were determined using HS-SPME and GC-MS, while total polyphenols were detected using HPLC and the spectrophotometric Folin-Ciocalteu method. Spectrophotometric assays (DPPH, ABTS, ORAC, FRAP) were performed to determine antioxidant activity, collagenase inhibition, acetylcholinesterase inhibition, and pancreatic lipase inhibition. Antimicrobial activity was determined using the broth microdilution test. The study found that the biological activities of different basil cultivars varied depending on the proportion of active compounds, as determined by chemical analyses. All six basil extracts significantly inhibited α-amylase, while Purple basil extract most significantly inhibited the activity of collagenase, acetylcholinesterase, and pancreatic lipase. Purple basil and Dark Opal basil I extracts exhibited the highest antimicrobial activity, while the Dark Opal basil II extract had the most significant antioxidant potential. The findings in this study suggest that ethanolic basil extracts have the potential to be used as dietary drugs and implemented in antiaging products. This study is unique in its aims to compare the chemical composition and biological activities of basil cultivars from Croatia and to evaluate potential toxicological effects through embryotoxicity tests on zebrafish Danio rerio embryos, and it reports the first evidence of anticollagenase, antidiabetic, and antilipidemic activities for these cultivars.
Collapse
Affiliation(s)
- Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Gabrijela Matijević
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Martić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Ekić
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Monika Fumić
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Jurić
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marin Roje
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
7
|
Mitropoulou G, Stavropoulou E, Vaou N, Tsakris Z, Voidarou C, Tsiotsias A, Tsigalou C, Taban BM, Kourkoutas Y, Bezirtzoglou E. Insights into Antimicrobial and Anti-Inflammatory Applications of Plant Bioactive Compounds. Microorganisms 2023; 11:1156. [PMID: 37317131 DOI: 10.3390/microorganisms11051156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Plants have long been thought to contribute to health promotion due to their fiber and phenolic content, as well as their inherent biological potential. The bioactive derivatives of medicinal plants are a valuable resource in the fight against serious diseases all around the world. The present review focuses on the current state of knowledge on the usage and medicinal applications of plant bioactives. Issues concerning the effect of aromatic plant derivatives on human gut microbiota and their antimicrobial and anti-inflammatory potentials are discussed and worth further exploring.
Collapse
Affiliation(s)
- Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Zacharias Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Arsenis Tsiotsias
- Department of Obstetrics, University of Western Macedonia, 50200 Ptolemaida, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Birce Mercanoglou Taban
- Dairy Technology Department, Faculty of Agriculture, Veterinary and Agriculture Campus, Ankara University, Diskapi, Ankara 06110, Turkey
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
8
|
Zhan X, Tan Y, Lv Y, Fang J, Zhou Y, Gao X, Zhu H, Shi C. The Antimicrobial and Antibiofilm Activity of Oregano Essential Oil against Enterococcus faecalis and Its Application in Chicken Breast. Foods 2022; 11:2296. [PMID: 35954060 PMCID: PMC9368637 DOI: 10.3390/foods11152296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Oregano essential oil (OEO) possesses anti-inflammatory, antioxidant, and cancer-suppressive properties. Enterococcus faecalis is a foodborne opportunistic pathogen that can be found in nature and the food processing industry. The goal of this investigation was to explore the antimicrobial action and mechanism of OEO against E. faecalis, inactivation action of OEO on E. faecalis in mature biofilms, and its application in chicken breast. The minimum inhibitory concentration (MIC) of OEO against E. faecalis strains (ATCC 29212 and nine isolates) ranged from 0.25 to 0.50 μL/mL. OEO therapy reduced intracellular adenosine triphosphate (ATP) levels, caused cell membrane hyperpolarization, increased the intracellular reactive oxygen species (ROS), and elevated extracellular malondialdehyde (MDA) concentrations. Furthermore, OEO treatment diminished cell membrane integrity and caused morphological alterations in the cells. In biofilms on stainless-steel, OEO showed effective inactivation activity against E. faecalis. OEO reduced the number of viable cells, cell viability and exopolysaccharides in the biofilm, as well as destroying its structure. Application of OEO on chicken breast results in a considerable reduction in E. faecalis counts and pH values, in comparison to control samples. These findings suggest that OEO could be utilized as a natural antibacterial preservative and could effectively control E. faecalis in food manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.T.); (Y.L.); (J.F.); (Y.Z.); (X.G.); (H.Z.)
| |
Collapse
|