1
|
Xu T, Cao F, Dai T, Liu T. RPA-CRISPR/Cas12a-Mediated Isothermal Amplification for Rapid Detection of Phytopythium helicoides. PLANT DISEASE 2024:PDIS06241300SR. [PMID: 39051993 DOI: 10.1094/pdis-06-24-1300-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Phytopythium helicoides, which belongs to algae (Chromista), Oomycota, Pythiales, Pythiaceae, and Phytophthora, is a quarantine pathogen that causes brown rot of fruits, stem rot and root rot, and other symptoms that can damage several tree species in urban landscaping. Therefore, disease management requires rapid and accurate diagnosis. The present study used recombinase polymerase amplification (RPA) in conjunction with the CRISPR/CRISPR-associated protein 12a (Cas12a) system to identify P. helicoides. The test exhibited high specificity and sensitivity and could detect 10 pg.μl-1 of P. helicoides genomic DNA at 37°C within 20 min. The test results were visible by excitation of fluorophores by blue light. This groundbreaking test is able to detect P. helicoides in artificially inoculated rhododendron leaves. The RPA-CRISPR/Cas12a detection assay developed in this study is characterized by its sensitivity, efficiency, and convenience. Early detection and control of P. helicoides is crucial for the protection of urban green cover species.
Collapse
Affiliation(s)
- Tingyan Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingli Liu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
2
|
Zhou Y, Yan Z, Zhou S, Li W, Yang H, Chen H, Deng Z, Zeng Q, Sun P, Wu Y. ERA-CRISPR/Cas12a-based, fast and specific diagnostic detection for Chlamydia pneumoniae. Front Cell Infect Microbiol 2024; 14:1477422. [PMID: 39554814 PMCID: PMC11564186 DOI: 10.3389/fcimb.2024.1477422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Chlamydia pneumoniae (C. pneumoniae) is a specialized intracellular parasitic pathogen capable of causing pneumonia, sinusitis, bronchitis, and other respiratory diseases, which pose significant public health challenges. Therefore, rapid, accurate, and sensitive diagnosis is crucial for the prevention and treatment of respiratory diseases caused by C. pneumoniae. In this study, we combined enzymatic recombination amplification (ERA) with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 12a system (CRISPR/Cas12a) to develop a dual detection platform termed the Cpn-ERA-CRISPR/Cas12a dual system. This system integrates both the ERA-CRISPR/Cas12a fluorescence system and the ERA-CRISPR/Cas12a lateral flow system. Detection results can be measured using a fluorescence detector or observed with the naked eye on lateral flow strips. The fluorescence system and the lateral flow system detect C. pneumoniae in 30 minutes and 15 minutes, respectively. This dual system exhibits no cross-reactivity with the other seven pathogens, demonstrating high specificity, and achieves a sensitivity of 100 copies/µL. Additionally, the Cpn-ERA-CRISPR/Cas12a dual system was employed to analyze 39 clinical samples, comprising 19 positive and 20 negative samples. The detection rate for positive samples was 100%, with no positive results in the negative samples, indicating a high level of concordance with qPCR results. In summary, the Cpn-ERA-CRISPR/Cas12a dual system represents a novel tool for diagnosing C. pneumoniae and holds promising application potential in grassroots community hospitals.
Collapse
Affiliation(s)
- Yanxia Zhou
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zijun Yan
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shi Zhou
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Weiwei Li
- Department of Clinical Laboratory, The Second People’s Hospital of Foshan, Foshan, China
| | - Hongyu Yang
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongliang Chen
- Department of Infection Control, The First People’s Hospital of Chenzhou, Chenzhou, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Qilin Zeng
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Peiyuan Sun
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yimou Wu
- The Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Liu T, Liu Q, Chen F, Shi Y, Maimaiti G, Yang Z, Zheng S, Lu X, Li H, Chen Z. An accurate and convenient method for Mycoplasma pneumoniae via one-step LAMP-CRISPR/Cas12b detection platform. Front Cell Infect Microbiol 2024; 14:1409078. [PMID: 39176261 PMCID: PMC11338869 DOI: 10.3389/fcimb.2024.1409078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Mycoplasma pneumoniae (MP) is the major cause of respiratory infections that threaten the health of children and adolescents worldwide. Therefore, an early, simple, and accurate detection approach for MP is critical to prevent outbreaks of MP-induced community-acquired pneumonia. Methods Here, we explored a simple and accurate method for MP identification that combines loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12b assay in a one-pot reaction. Results In the current study, the whole reaction was completed within 1 h at a constant temperature of 57°C. The limit of detection of this assay was 33.7 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100%, without any cross-reactivity with other pathogens. Overall, 272 clinical samples were used to evaluate the clinical performance of LAMP-CRISPR/Cas12b. Compared with the gold standard results from real-time PCR, the present method provided a sensitivity of 88.11% (126/143), specificity of 100% (129/129), and consistency of 93.75% (255/272). Discussion Taken together, our preliminary results illustrate that the LAMP-CRISPR/Cas12b method is a simple and reliable tool for MP diagnosis that can be performed in resource-limited regions.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Fuqun Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ying Shi
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Guliya Maimaiti
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhanhua Yang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhaoyun Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
4
|
Zhang X, Wang Y, Tang Y, Yang L, Zhao C, Yang G, Wang P, Gao S. A One-Step RPA-CRISPR Assay Using crRNA Based on Suboptimal Protospacer Adjacent Motif for Vibrio vulnificus Detection. Foodborne Pathog Dis 2024; 21:458-466. [PMID: 38551156 DOI: 10.1089/fpd.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Vibrio vulnificus is a hazardous foodborne pathogen responsible for approximately 95% of seafood-related deaths. This highlights the urgent requirement for specialized detection tools to be developed and used by food enterprises and food safety authorities. The DETECTR (DNA endonuclease targeted CRISPR trans reporter) system that combines CRISPR/Cas and recombinase polymerase amplification (RPA) has been utilized to develop a molecular detection assay for V. vulnificus. However, because the incompatibility between RPA and Cas12a cleavage has not been addressed, it is a two-step assay that lacks convenience and presents contamination risk. Here, we developed a one-step RPA-CRISPR assay for V. vulnificus using a special crRNA targeting a sequence with a suboptimal protospacer adjacent motif (PAM). The entire assay, conducted at 37°C, takes only 40-60 min, yields results visualized under blue light, and exhibits exceptional specificity and sensitivity (detecting 4 pathogen genome copies per reaction). This study offers a valuable tool for detecting V. vulnificus, aiding in foodborne infection prevention, and exemplifies one-step RPA-CRISPR assays managing Cas-cleavage activity through PAM adjustments.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
5
|
Wang Y, Chen H, Pan Q, Wang J, Jiao X, Zhang Y. Development and evaluation of rapid and accurate one-tube RPA-CRISPR-Cas12b-based detection of mcr-1 and tet(X4). Appl Microbiol Biotechnol 2024; 108:345. [PMID: 38801527 PMCID: PMC11129972 DOI: 10.1007/s00253-024-13191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingyun Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Zhao Z, Cao S, Sun M, Yang Q, Huang T, Yang X, Li J, Zhang X, Li X, Wang X, Jiang W, Gong P. Rapid visual detection of Giardia duodenalis in faecal samples using an RPA-CRISPR/Cas12a system. Parasitol Res 2024; 123:176. [PMID: 38573530 DOI: 10.1007/s00436-024-08197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/μL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.
Collapse
Affiliation(s)
- Zhiteng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Songgao Cao
- Pingdu People's Hospital, Qingdao, 266700, People's Republic of China
| | - Min Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Qiankun Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Taojun Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xing Yang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, Yunnan, 671003, People's Republic of China
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xichen Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaocen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Weina Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266071, People's Republic of China.
| | - Pengtao Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
7
|
Li X, Zhong J, Li H, Qiao Y, Mao X, Fan H, Zhong Y, Imani S, Zheng S, Li J. Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid. Front Mol Biosci 2023; 10:1260883. [PMID: 37808520 PMCID: PMC10552857 DOI: 10.3389/fmolb.2023.1260883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are widely used as gene editing tools in biology, microbiology, and other fields. CRISPR is composed of highly conserved repetitive sequences and spacer sequences in tandem. The spacer sequence has homology with foreign nucleic acids such as viruses and plasmids; Cas effector proteins have endonucleases, and become a hotspot in the field of molecular diagnosis because they recognize and cut specific DNA or RNA sequences. Researchers have developed many diagnostic platforms with high sensitivity, high specificity, and low cost by using Cas proteins (Cas9, Cas12, Cas13, Cas14, etc.) in combination with signal amplification and transformation technologies (fluorescence method, lateral flow technology, etc.), providing a new way for rapid detection of pathogen nucleic acid. This paper introduces the biological mechanism and classification of CRISPR-Cas technology, summarizes the existing rapid detection technology for pathogen nucleic acid based on the trans cleavage activity of Cas, describes its characteristics, functions, and application scenarios, and prospects the future application of this technology.
Collapse
Affiliation(s)
- Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yinbiao Qiao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yiwu Zhong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- The Organ Repair and Regeneration Medicine Institute of Hangzhou, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Zhou J, Xiao F, Fu J, Jia N, Huang X, Sun C, Xu Z, Zhang Y, Qu D, Wang Y. Rapid, ultrasensitive and highly specific diagnosis of Mycoplasma pneumoniae by a CRISPR-based detection platform. Front Cell Infect Microbiol 2023; 13:1147142. [PMID: 37577370 PMCID: PMC10414563 DOI: 10.3389/fcimb.2023.1147142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is an important causative agent of morbidity and mortality among all age groups, especially among patients of extreme ages. Improved and readily available tests for accurate, sensitive and rapid diagnosis of MP infection is sorely needed. Here, we developed a CRISPR-Cas12b-based detection platform on the basis of recombinase polymerase amplification (RPA) for rapid, simple, and accurate diagnosis of MP infection, named MP-RPA-CRISPR. The RPA was employed for amplifying the community-acquired respiratory distress syndrome (CARDS) toxin gene of MP strains at the optimal reaction temperature 37°C. The resulting amplicons were decoded by the CRISPR-Cas12b-based detection platform, which was interpreted by real-time PCR system and by naked eye under blue light. The MP-RPA-CRISPR can detected down to 5 fg of genomic DNA templates of MP strains and accurately distinguish MP strains from non-MP strains without any cross-reactivity. A total of 96 bronchoalveolar lavage fluid (BALF)samples collected from patients suspected of respiratory infection were used to evaluate the clinical performance of the MP-RPA-CRISPR assay. As a result, our assay accurately diagnosed 45 MP-infected samples and 51 non-MP infected sample, and the results obtained from MP-RPA-CRISPR were consistent with microfluidic chip technology. In conclusion, our MP-RPA-CRISPR assay is a simple, rapid, portable and highly sensitive method to diagnose MP infection, which can be used as a promising tool in a variety of settings including clinical, field, and resource-limited aeras.
Collapse
Affiliation(s)
- Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Xu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Yu Zhang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
9
|
Guo Y, Xia H, Dai T, Liu T, Shamoun SF, CuiPing W. CRISPR/Cas12a-based approaches for efficient and accurate detection of Phytophthora ramorum. Front Cell Infect Microbiol 2023; 13:1218105. [PMID: 37441240 PMCID: PMC10333691 DOI: 10.3389/fcimb.2023.1218105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Phytophthora ramorum is a quarantine pathogen that causes leaf blight and shoot dieback of the crown, bark cankers and death on a number of both ornamental and forest trees, especially in North America and northern Europe, where it has produced severe outbreaks. Symptoms caused by P. ramorum can be confused with those by other Phytophthora and fungal species. Early and accurate detection of the causal pathogen P. ramorum is crucial for effective prevention and control of Sudden Oak Death. Methods In this study, we developed a P. ramorum detection technique based on a combination of recombinase polymerase amplification (RPA) with CRISPR/Cas12a technology (termed RPACRISPR/ Cas12a). Results This novel method can be utilized for the molecular identification of P. ramorum under UV light and readout coming from fluorophores, and can specifically detect P. ramorum at DNA concentrations as low as 100 pg within 25 min at 37°C. Discussion We have developed a simple, rapid, sensitive, unaided-eye visualization, RPA CRISPR/Cas12a-based detection system for the molecular identification of P. ramorum that does not require technical expertise or expensive ancillary equipment. And this system is sensitive for both standard laboratory samples and samples from the field.
Collapse
Affiliation(s)
- Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Simon Francis Shamoun
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada
| | - Wu CuiPing
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Gong L, Chen X, Wang Y, Liang J, Liu X, Wang Y. Rapid, sensitive, and highly specific detection of monkeypox virus by CRISPR-based diagnostic platform. Front Public Health 2023; 11:1137968. [PMID: 37441636 PMCID: PMC10335395 DOI: 10.3389/fpubh.2023.1137968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Background Monkeypox (MPX), caused by the Monkeypox virus (MPXV), has incurred global attention since it broke out in many countries in recent times, which highlights the need for rapid and reliable diagnosis of MPXV infection. Methods We combined recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based detection to devise a diagnostic test for detection of MPXV and differentiation of its two clades [Central Africa clade (MPXV-CA) and West Africa clade (MPXV-WA)], and called it MPXV-RCC. The sensitivity, specificity and practicability of this method have been analyzed. Results The optimal conditions of MPXV-RCC assay include two RPA reactions at 38°C for 25 min and a CRISPR/Cas12a-gRNA detection at 37°C for 10 min. The results of MPXV-RCC assay were indicated by a real-time fluorescence analysis software. Thus, the whole detection process, including rapid template preparation (20 min), RPA reaction (25 min) and CRISPR-based detection (10 min), could be finished within 1 hour. The sensitivity of MPXV-RCC for MPXV-CA and MPXV-WA detection was down to 5~10 copies of recombination plasmids and pseudovirus per reaction. Particularly, MPXV-RCC assay could clearly differentiate MPXV-CA from MPXV-WA, and had no cross-reactivity with other pathogens. In addition, the feasibility of MPXV-RCC assay was further validated by using spiked clinical samples. Conclusion The MPXV-RCC assay developed here is a promising tool for quick and reliable diagnosis of MPXV infection.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaomin Chen
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
11
|
Chen Z, Yang X, Xia H, Wu C, Yang J, Dai T. A Frontline, Rapid, Nucleic Acid-Based Fusarium circinatum Detection System Using CRISPR/Cas12a Combined with Recombinase Polymerase Amplification. PLANT DISEASE 2023:PDIS05221234RE. [PMID: 36480733 DOI: 10.1094/pdis-05-22-1234-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pitch canker caused by the fungus Fusarium circinatum is a damaging disease that affects pines in Europe, South Africa, and North America in both the southeast and west coast of the United States. Several countries, including China, have listed F. circinatum as a quarantine pathogen. Timely detection, an important pillar of the quarantine effort, can efficiently prevent the introduction of F. circinatum into new areas or facilitate management and eradication strategies in already infested sites. In this study, we developed an F. circinatum detection technique based on a combination of recombinase polymerase amplification (RPA) with CRISPR/Cas12a technology (termed RPA-CRISPR/Cas12a). After obtaining DNA, this novel method can be utilized for the molecular identification of F. circinatum using the naked eye and can specifically detect F. circinatum at DNA concentrations as low as 200 fg within 30 min at 37°C. The system is sensitive for both standard laboratory samples and samples from the field. In summary, we have developed a simple, rapid, sensitive, unaided-eye visualization, RPA-CRISPR/Cas12a-based detection system for the molecular identification of F. circinatum that does not require technical expertise or expensive ancillary equipment.
Collapse
Affiliation(s)
- Zhenpeng Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao Yang
- Plant and Pest Diagnostic Clinic, Department of Plant Industry, Clemson University, Pendleton, SC, U.S.A
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Cuiping Wu
- Animal, Plant, and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Jing Yang
- Animal, Plant, and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Guo Y, Xia H, Dai T, Liu T. RPA-CRISPR/Cas12a mediated isothermal amplification for visual detection of Phytophthora sojae. Front Cell Infect Microbiol 2023; 13:1208837. [PMID: 37305413 PMCID: PMC10250720 DOI: 10.3389/fcimb.2023.1208837] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Phytophthora sojae is among the most devastating pathogens of soybean (Glycine max) and severely impacts soybean production in several countries. The resulting disease can be difficult to diagnose and other Phytophthora species can also infect soybean. Accurate diagnosis is important for management of the disease caused by P. sojae. Methods In this study, recombinase polymerase amplification (RPA) in combination with the CRISPR/Cas12a system were used for detection of P. sojae. The assay was highly specific to P. sojae. Results The test results were positive for 29 isolates of P. sojae, but negative for 64 isolates of 29 Phytophthora species, 7 Phytopythium and Pythium species, 32 fungal species, and 2 Bursaphelenchus species. The method was highly sensitive, detecting as little as 10 pg.µL-1 of P. sojae genomic DNA at 37°C in 20 min. The test results were visible under UV light and readout coming from fluorophores. In addition, P. sojae was detected from natural inoculated hypocotyls of soybean seedlings using this novel assay. The rapidity and accuracy of the method were verified using 30 soybean rhizosphere samples. Discussion In conclusion, the RPA-CRISPR/Cas12a detection assay developed here is sensitive, efficient, and convenient, and has potential for further development as a kit for monitoring root rot of soybean in the field.
Collapse
Affiliation(s)
- Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
13
|
Qiu X, Liu X, Wang R, Ma X, Han L, Yao J, Li Z. Accurate, Sensitive, and Rapid Detection of Pseudomonas aeruginosa Based on CRISPR/Cas12b with One Fluid-Handling Step. Microbiol Spectr 2023; 11:e0352322. [PMID: 36622174 PMCID: PMC9927138 DOI: 10.1128/spectrum.03523-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is a major bacterial pathogen causing nosocomial infections and accounts for morbidity and mortality among patients with cystic fibrosis. An accurate, sensitive, and rapid method to detect P. aeruginosa is critical for the early control of infection and patient management. In this study, we established a P. aeruginosa clustered regularly interspaced short palindromic repeats testing in one pot (CRISPR-top) assay which detected P. aeruginosa with one fluid-handling step in one tube. The reaction was performed isothermally within 1 h; thus, specific instruments were not required. The optimal reaction conditions of this assay were determined to be a temperature of 55°C; working concentrations of 1 μM for the forward inner primer and backward inner primer, 0.5 μM for the loop forward primer and loop backward primer, and 0.25 μM for the forward outer primer and backward outer primer; as well as a 2 μM concentration single-stranded DNA reporter molecules. In terms of specificity, our assay showed 100% inclusivity and exclusivity among 48 strains, including 15 P. aeruginosa clinical isolates and 33 non-P. aeruginosa strains. The limit of detection of our method was 10 copies per reaction mixture. Forty-six human sputum specimens from patients with respiratory symptoms were tested. Using the results of quantitative real-time PCR as the gold standard, our method showed 85.3% (29/34) sensitivity, 100% (12/12) specificity, a positive predictive value of 100% (29/29), and a negative predictive value of 70.6% (12/17). In summary, the P. aeruginosa CRISPR-top assay developed in the present study is a high-efficiency alternative tool for the accurate and rapid detection of P. aeruginosa, especially in resource-limited settings. IMPORTANCE This study reports a P. aeruginosa CRISPR-top assay which can precisely identify P. aeruginosa using nucleic acids from pure cultures or clinical samples in one pot with one fluid-handling step. The P. aeruginosa CRISPR-top reaction is suitable for on-site testing, and its diagnostic performance can be compared with that of qPCR.
Collapse
Affiliation(s)
- Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueping Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruixue Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
14
|
Long W, Yang J, Zhao Q, Pan Y, Luan X, He B, Han X, Wang Y, Song Y. Metal-Organic Framework-DNA Bio-Barcodes Amplified CRISPR/Cas12a Assay for Ultrasensitive Detection of Protein Biomarkers. Anal Chem 2023; 95:1618-1626. [PMID: 36541937 DOI: 10.1021/acs.analchem.2c04737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CRISPR/Cas12a shows excellent potential in disease diagnostics. However, insensitive signal conversion strategies hindered its application in detecting protein biomarkers. Here, we report a metal-organic framework (MOF)-based DNA bio-barcode integrated with the CRISPR/Cas12a system for ultrasensitive detection of protein biomarkers. In this work, zirconium-based MOF nanoparticles were comodified with antibodies and bio-barcode phosphorylated DNA as an efficient signal converter, which not only recognized the protein biomarker to form the sandwich complex but also released the bio-barcode DNA activators after MOF dissociation to activate the trans-cleavage activity of Cas12a. Due to the obvious advantages, including numerous loaded oligonucleotides, a convenient release process, and the nontoxic release reagent, this MOF-DNA bio-barcode strategy could amplify the CRISPR/Cas12a system to achieve simple and highly sensitive detection of tumor protein biomarkers with detection limits of 0.03 pg/mL (PSA) and 0.1 pg/mL (CEA), respectively. Furthermore, this platform could detect PSA directly in clinical serum samples, offering a powerful tool for early disease diagnosis.
Collapse
Affiliation(s)
- Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiao Zhao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Bao M, Zhang S, Ten Pas C, Dollery SJ, Bushnell RV, Yuqing FNU, Liu R, Lu G, Tobin GJ, Du K. Computer vision enabled funnel adapted sensing tube (FAST) for power-free and pipette-free nucleic acid detection. LAB ON A CHIP 2022; 22:4849-4859. [PMID: 36111877 DOI: 10.1039/d2lc00586g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A simple, portable, and low-cost microfluidic system-funnel adapted sensing tube (FAST) is developed as an integrated, power-free, and pipette-free biosensor for viral nucleic acids. This FAST chip consists of four reaction chambers separated by carbon fiber rods, and the reagents in each chamber are transferred and mixed by manually removing the rods. Rather than using electrical heaters, only a hand warmer pouch is used for an isothermal recombinase polymerase amplification (RPA) and CRISPR-Cas12a reaction. The signal produced by the RPA-CRISPR reaction is observed by the naked eye using an inexpensive flashlight as a light source. The FAST chip is fabricated using water-soluble polyvinyl alcohol (PVA) as a sacrificial core, which is simple and environmentally friendly. Using a SARS-CoV-2 fragment as a target, a ∼10 fM (6 × 103 copies per μL) detection limit is achieved. To generalize standard optical readout for individuals without training, a linear kernel algorithm is created, showing an accuracy of ∼100% for identifying both positive and negative samples in FAST. This power-free, pipette-free, disposable, and simple device will be a promising tool for nucleic acid diagnostics in either clinics or low-resource settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| | - Shuhuan Zhang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| | - Chad Ten Pas
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| | | | - Ruth V Bushnell
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA
| | - F N U Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| | - Rui Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| | - Guoyu Lu
- Department of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
16
|
Yang X, Wang Y, Liu Y, Huang J, Wei X, Tan Q, Zeng X, Ying X, Li S. Rapid, ultrasensitive, and highly specific identification of Brucella abortus utilizing multiple cross displacement amplification combined with a gold nanoparticles-based lateral flow biosensor. Front Microbiol 2022; 13:1071928. [PMID: 36523830 PMCID: PMC9744775 DOI: 10.3389/fmicb.2022.1071928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 10/28/2023] Open
Abstract
Brucella abortus (B. abortus) as an important infectious agent of bovine brucellosis cannot be ignored, especially in countries/regions dominated by animal husbandry. Thus, the development of an ultrasensitive and highly specific identification technique is an ideal strategy to control the transmission of bovine brucellosis. In this report, a novel detection protocol, which utilizes multiple cross displacement amplification (MCDA) combined with a gold nanoparticles-based lateral flow biosensor (AuNPs-LFB) targeting the BruAb2_0168 gene was successfully devised and established for the identification of B. abortus (termed B. abortus-MCDA-LFB). Ten specific primers containing engineered C1-FAM (carboxyfluorescein) and D1-biotin primers were designed according to the MCDA reaction mechanism. These genomic DNA extracted from various bacterial strains and whole blood samples were used to optimize and evaluate the B. abortus-MCDA-LFB assay. As a result, the optimal reaction conditions for the B. abortus-MCDA-LFB assay were 66°C for 40 min. The limit of detection of the B. abortus-MCDA-LFB was 10 fg/μl (~3 copies/μl) for genomic DNA extracted from pure cultures of B. abortus isolate. Meanwhile, the B. abortus-MCDA-LFB assay accurately identified all tested B. abortus strains, and there was no cross-reaction with non-B. abortus pathogens. Moreover, the detection workflow of the B. abortus-MCDA-LFB assay for whole blood samples can be completed within 70 min, and the cost of a single test is approximately 5.0 USD. Taken together, the B. abortus-MCDA-LFB assay is a visual, fast, ultrasensitive, low-cost, easy-to-operate, and highly specific detection method, which can be used as a rapid identification tool for B. abortus infections.
Collapse
Affiliation(s)
- Xinggui Yang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Yue Wang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Ying Liu
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Junfei Huang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Xiaoyu Wei
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Qinqin Tan
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xia Ying
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Shijun Li
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| |
Collapse
|
17
|
Visual detection of Mycoplasma pneumoniae by the recombinase polymerase amplification assay coupled with lateral flow dipstick. J Microbiol Methods 2022; 202:106591. [DOI: 10.1016/j.mimet.2022.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022]
|
18
|
Chen K, Shen Z, Wang G, Gu W, Zhao S, Lin Z, Liu W, Cai Y, Mushtaq G, Jia J, Wan C(C, Yan T. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Front Bioeng Biotechnol 2022; 10:986233. [PMID: 36185462 PMCID: PMC9524266 DOI: 10.3389/fbioe.2022.986233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas technology originated from the immune mechanism of archaea and bacteria and was awarded the Nobel Prize in Chemistry in 2020 for its success in gene editing. Molecular diagnostics is highly valued globally for its development as a new generation of diagnostic technology. An increasing number of studies have shown that CRISPR/Cas technology can be integrated with biosensors and bioassays for molecular diagnostics. CRISPR-based detection has attracted much attention as highly specific and sensitive sensors with easily programmable and device-independent capabilities. The nucleic acid-based detection approach is one of the most sensitive and specific diagnostic methods. With further research, it holds promise for detecting other biomarkers such as small molecules and proteins. Therefore, it is worthwhile to explore the prospects of CRISPR technology in biosensing and summarize its application strategies in molecular diagnostics. This review provides a synopsis of CRISPR biosensing strategies and recent advances from nucleic acids to other non-nucleic small molecules or analytes such as proteins and presents the challenges and perspectives of CRISPR biosensors and bioassays.
Collapse
Affiliation(s)
- Kun Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, Shanghai, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Zihan Lin
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|