1
|
Malakshahi Kurdestani A, Francioli D, Ruser R, Piccolo A, Maywald NJ, Chen X, Müller T. Optimizing nitrogen fertilization in maize: the impact of nitrification inhibitors, phosphorus application, and microbial interactions on enhancing nutrient efficiency and crop performance. FRONTIERS IN PLANT SCIENCE 2024; 15:1451573. [PMID: 39416481 PMCID: PMC11479917 DOI: 10.3389/fpls.2024.1451573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Despite the essential role of nitrogen fertilizers in achieving high crop yields, current application practices often exhibit low efficiency. Optimizing nitrogen (N) fertilization in agriculture is, therefore, critical for enhancing crop productivity while ensuring sustainable food production. This study investigates the effects of nitrification inhibitors (Nis) such as Dimethyl Pyrazole Phosphate (DMPP) and Dimethyl Pyrazole Fulvic Acid (DMPFA), plant growth-promoting bacteria inoculation, and phosphorus (P) application on the soil-plant-microbe system in maize. DMPFA is an organic nitrification inhibitor that combines DMP and fulvic acid for the benefits of both compounds as a chelator. A comprehensive rhizobox experiment was conducted, employing varying levels of P, inoculant types, and Nis, to analyze the influence of these factors on various soil properties, maize fitness, and phenotypic traits, including root architecture and exudate profile. Additionally, the experiment examined the effects of treatments on the bacterial and fungal communities within the rhizosphere and maize roots. Our results showed that the use of Nis improved plant nutrition and biomass. For example, the use of DMPFA as a nitrification inhibitor significantly improved phosphorus use efficiency by up to 29%, increased P content to 37%, and raised P concentration in the shoot by 26%, compared to traditional ammonium treatments. The microbial communities inhabiting maize rhizosphere and roots were also highly influenced by the different treatments. Among them, the N treatment was the major driver in shaping bacterial and fungal communities in both plant compartments. Notably, Nis reduced significantly the abundance of bacterial groups involved in the nitrification process. Moreover, we observed that each experimental treatment employed in this investigation could select, promote, or reduce specific groups of beneficial or detrimental soil microorganisms. Overall, our results highlight the intricate interplay between soil amendments, microbial communities, and plant nutrient dynamics, suggesting that Nis, particularly DMPFA, could be pivotal in bolstering agricultural sustainability by optimizing nutrient utilization.
Collapse
Affiliation(s)
| | - Davide Francioli
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Reiner Ruser
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Alessandro Piccolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, Italy
| | | | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Torsten Müller
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Ding L, Chen H, Wang M, Wang P. Shrub expansion raises both aboveground and underground multifunctionality on a subtropical plateau grassland: coupling multitrophic community assembly to multifunctionality and functional trade-off. Front Microbiol 2024; 14:1339125. [PMID: 38274762 PMCID: PMC10808678 DOI: 10.3389/fmicb.2023.1339125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Shrubs have expanded into grasslands globally. However, the relative importance of aboveground and underground diversity and the relative importance of underground community assembly and diversity in shaping multifunctionality and functional trade-offs over shrub expansion remains unknown. Methods In this study, aboveground and underground multitrophic communities (abundant and rare archaea, bacteria, fungi, nematodes, and protists) and 208 aboveground and underground ecosystem properties or indicators were measured at three stages (Grass, Mosaic, Shrub) of shrub expansion on the Guizhou subtropical plateau grassland to study multifunctionality and functional trade-offs. Results The results showed that shrub expansion significantly enhanced aboveground, underground, and entire ecosystem multifunctionality. The functional trade-off intensities of the aboveground, underground, and entire ecosystems showed significant V-shaped changes with shrub expansion. Shrub expansion improved plant species richness and changed the assembly process and species richness of soil abundant and rare subcommunities. Plant species diversity had a greater impact on multifunctionality than soil microbial diversity by more than 16%. The effect of plant species diversity on functional trade-offs was only one-fifth of the effect of soil microbial diversity. The soil microbial species richness did not affect multifunctionality, however, the assembly process of soil microbial communities did. Rather than the assembly process of soil microbial communities, the soil microbial species richness affected functional trade-offs. Discussion Our study is the first to couple multitrophic community assemblies to multifunctionality and functional trade-offs. Our results would boost the understanding of the role of aboveground and underground diversity in multifunctionality and functional trade-offs.
Collapse
Affiliation(s)
- Leilei Ding
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Hong Chen
- Guizhou Songbaishan Reservoir Management Office, Guiyang, Guizhou, China
| | - Mengya Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Puchang Wang
- School of Life Science, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Rui J, Zhao Y, Cong N, Wang F, Li C, Liu X, Hu J, Ling N, Jing X. Elevational distribution and seasonal dynamics of alpine soil prokaryotic communities. Front Microbiol 2023; 14:1280011. [PMID: 37808282 PMCID: PMC10557256 DOI: 10.3389/fmicb.2023.1280011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The alpine grassland ecosystem is a biodiversity hotspot of plants on the Qinghai-Tibetan Plateau, where rapid climate change is altering the patterns of plant biodiversity along elevational and seasonal gradients of environments. However, how belowground microbial biodiversity changes along elevational gradient during the growing season is not well understood yet. Here, we investigated the elevational distribution of soil prokaryotic communities by using 16S rRNA amplicon sequencing along an elevational gradient between 3,200 and 4,200 m, and a seasonal gradient between June and September in the Qinghai-Tibetan alpine grasslands. First, we found soil prokaryotic diversity and community composition significantly shifted along the elevational gradient, mainly driven by soil temperature and moisture. Species richness did not show consistent elevational trends, while those of evenness declined with elevation. Copiotrophs and symbiotic diazotrophs declined with elevation, while oligotrophs and AOB increased, affected by temperature. Anaerobic or facultatively anaerobic bacteria and AOA were hump-shaped, mainly influenced by moisture. Second, seasonal patterns of community composition were mainly driven by aboveground biomass, precipitation, and soil temperature. The seasonal dynamics of community composition indicated that soil prokaryotic community, particularly Actinobacteria, was sensitive to short-term climate change, such as the monthly precipitation variation. At last, dispersal limitation consistently dominated the assembly process of soil prokaryotic communities along both elevational and seasonal gradients, especially for those of rare species, while the deterministic process of abundant species was relatively higher at drier sites and in drier July. The balance between deterministic and stochastic processes in abundant subcommunities might be strongly influenced by water conditions (precipitation/moisture). Our findings suggest that both elevation and season can alter the patterns of soil prokaryotic biodiversity in alpine grassland ecosystem of Qinghai-Tibetan Plateau, which is a biodiversity hotspot and is experiencing rapid climate change. This work provides new insights into the response of soil prokaryotic communities to changes in elevation and season, and helps us understand the temporal and spatial variations in such climate change-sensitive regions.
Collapse
Affiliation(s)
- Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Fuxin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Zhu W, Lu X, Hong C, Hong L, Ding J, Zhou W, Zhu F, Yao Y. Pathogen resistance in soils associated with bacteriome network reconstruction through reductive soil disinfestation. Appl Microbiol Biotechnol 2023; 107:5829-5842. [PMID: 37450017 DOI: 10.1007/s00253-023-12676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Reductive soil disinfestation (RSD) is an effective bioremediation technique to restructure the soil microbial community and eliminate soilborne phytopathogens. Yet we still lack a comprehensive understanding of the keystone taxa involved and their roles in ecosystem functioning in degraded soils treated by RSD. In this study, the bacteriome network structure in RSD-treated soil and the subsequent cultivation process were explored. As a result, bacterial communities in RSD-treated soil developed more complex topologies and stable co-occurrence patterns. The richness and diversity of keystone taxa were higher in the RSD group (module hub: 0.57%; connector: 23.98%) than in the Control group (module hub: 0.16%; connector: 19.34%). The restoration of keystone taxa in RSD-treated soil was significantly (P < 0.01) correlated with soil pH, total organic carbon, and total nitrogen. Moreover, a strong negative correlation (r = -0.712; P < 0.01) was found between keystone taxa richness and Fusarium abundance. Our results suggest that keystone taxa involved in the RSD network structure are capable of maintaining a flexible generalist mode of metabolism, namely with respect to nitrogen fixation, methylotrophy, and methanotrophy. Furthermore, distinct network modules composed by numerous anti-pathogen agents were formed in RSD-treated soil; i.e., the genera Hydrogenispora, Azotobacter, Sphingomonas, and Clostridium_8 under the soil treatment stage, and the genera Anaerolinea and Pseudarthrobacter under the plant cultivation stage. The study provides novel insights into the association between fungistasis and keystone or sensitive taxa in RSD-treated soil, with significant implications for comprehending the mechanisms of RSD. KEY POINTS: • RSD enhanced bacteriome network stability and restored keystone taxa. • Keystone taxa richness was negatively correlated with Fusarium abundance. • Distinct sensitive OTUs and modules were formed in RSD soil.
Collapse
Affiliation(s)
- Weijing Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunlai Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Leidong Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian Ding
- Zhejiang Agricultural Technical Extension Center, Hangzhou, 310020, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fengxiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanlai Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|