1
|
Özer H, Wasser D, Sandner L, Soppa J. Intermolecular Gene Conversion for the Equalization of Genome Copies in the Polyploid Haloarchaeon Haloferax volcanii: Identification of Important Proteins. Genes (Basel) 2024; 15:861. [PMID: 39062640 PMCID: PMC11276520 DOI: 10.3390/genes15070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects.
Collapse
Affiliation(s)
| | | | | | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany; (H.Ö.); (D.W.); (L.S.)
| |
Collapse
|
2
|
Pilatowski-Herzing E, Samson RY, Takemata N, Badel C, Bohall PB, Bell SD. Capturing chromosome conformation in Crenarchaea. Mol Microbiol 2024:10.1111/mmi.15245. [PMID: 38404013 PMCID: PMC11344861 DOI: 10.1111/mmi.15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
While there is a considerable body of knowledge regarding the molecular and structural biology and biochemistry of archaeal information processing machineries, far less is known about the nature of the substrate for these machineries-the archaeal nucleoid. In this article, we will describe recent advances in our understanding of the three-dimensional organization of the chromosomes of model organisms in the crenarchaeal phylum.
Collapse
Affiliation(s)
- Elyza Pilatowski-Herzing
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Rachel Y. Samson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Naomichi Takemata
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
- Present address: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Catherine Badel
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
- Present address: Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Peter B. Bohall
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Takemata N. How Do Thermophiles Organize Their Genomes? Microbes Environ 2024; 39:n/a. [PMID: 38839371 DOI: 10.1264/jsme2.me23087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
All cells must maintain the structural and functional integrity of the genome under a wide range of environments. High temperatures pose a formidable challenge to cells by denaturing the DNA double helix, causing chemical damage to DNA, and increasing the random thermal motion of chromosomes. Thermophiles, predominantly classified as bacteria or archaea, exhibit an exceptional capacity to mitigate these detrimental effects and prosper under extreme thermal conditions, with some species tolerating temperatures higher than 100°C. Their genomes are mainly characterized by the presence of reverse gyrase, a unique topoisomerase that introduces positive supercoils into DNA. This enzyme has been suggested to maintain the genome integrity of thermophiles by limiting DNA melting and mediating DNA repair. Previous studies provided significant insights into the mechanisms by which NAPs, histones, SMC superfamily proteins, and polyamines affect the 3D genomes of thermophiles across different scales. Here, I discuss current knowledge of the genome organization in thermophiles and pertinent research questions for future investigations.
Collapse
Affiliation(s)
- Naomichi Takemata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
4
|
Badel C, Bell SD. Chromosome architecture in an archaeal species naturally lacking structural maintenance of chromosomes proteins. Nat Microbiol 2024; 9:263-273. [PMID: 38110698 PMCID: PMC10769869 DOI: 10.1038/s41564-023-01540-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023]
Abstract
Proteins in the structural maintenance of chromosomes (SMC) superfamily play key roles in chromosome organization and are ubiquitous across all domains of life. However, SMC proteins are notably absent in the Desulfurococcales of phylum Crenarchaeota. Intrigued by this observation, we performed chromosome conformation capture experiments in the model Desulfurococcales species Aeropyrum pernix. As in other archaea, we observe chromosomal interaction domains across the chromosome. The boundaries between chromosomal interaction domains show a dependence on transcription and translation for their definition. Importantly, however, we reveal an additional higher-order, bipartite organization of the chromosome-with a small high-gene-expression and self-interacting domain that is defined by transcriptional activity and loop structures. Viewing these data in the context of the distribution of SMC superfamily proteins in the Crenarchaeota, we suggest that the organization of the Aeropyrum genome represents an evolutionary antecedent of the compartmentalized architecture observed in the Sulfolobus lineage.
Collapse
Affiliation(s)
- Catherine Badel
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France.
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
- Biology Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
5
|
Bell SD. Form and function of archaeal genomes. Biochem Soc Trans 2022; 50:1931-1939. [PMID: 36511238 PMCID: PMC9764264 DOI: 10.1042/bst20221396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023]
Abstract
A key maxim in modernist architecture is that 'form follows function'. While modernist buildings are hopefully the product of intelligent design, the architectures of chromosomes have been sculpted by the forces of evolution over many thousands of generations. In the following, I will describe recent advances in our understanding of chromosome architecture in the archaeal domain of life. Although much remains to be learned about the mechanistic details of archaeal chromosome organization, some general principles have emerged. At the 10-100 kb level, archaeal chromosomes have a conserved local organization reminiscent of bacterial genomes. In contrast, lineage-specific innovations appear to have imposed distinct large-scale architectural features. The ultimate functions of genomes are to store and to express genetic information. Gene expression profiles have been shown to influence chromosome architecture, thus their form follows function. However, local changes to chromosome conformation can also influence gene expression and therefore, in these instances, function follows form.
Collapse
Affiliation(s)
- Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, U.S.A
- Biology Department, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|